GRASS Google Summer of Code 2019
Table of Contents
About
Ideas
Post your ideas here or to the grass-dev mailing list if you want to discuss them more. To edit this wiki, you need to login with an OSGeo Userid; read also some help for using trac.
If you are a student you can suggest an new idea or pick up an existing one in any case write about it to grass-dev mailing list.
You are invited as well to have a close look at (and re-suggest!) ideas from previous years (2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018) which have not yet been implemented. You can also look at accepted GRASS GSoC projects from previous years for an idea of scope.
Include "GRASS GIS" in the title of our idea to easily distinguish ideas and projects inside OSGeo.
Some bigger ideas may have their own pages, so you can link them here. The pages can be either independent if the page already exists (e.g. wxGUIDevelopment/SingleWindow
), or more preferably subpages of this page if the idea is (re-)developed for this GSoC. In the later case, use the word "idea" in the page name to distinguish the idea page (e.g. GSoC/2017/CoolGRASSProjectIdea
) from the possible student project page (e.g. GSoC/2017/CoolGRASSProject
).
Title of idea
Description here
- Requirements:
- Mentor:
- Proposed by:
- Rating:
- Expected Outcomes:
- Test of skills:
- Other:
Integration of PDAL into GRASS GIS
- Fully replace LibLAS.
- Expose the rich PDAL functionality.
- Use PDAL C API.
- Share code with modules such as v.in.lidar (libLAS-based) and r.in.xyz for easy future maintenance.
- Optional (depending on time) or as a separate topic: v.external and
@PDAL
pseudo-mapset for point clouds - Requirements: C, C++
- Mentor: Vaclav Petras
- Co-mentors: Doug Newcomb (non-coding part), Martin Landa
- Rating: medium
- Expected Outcomes: r.in.lidar, v.in.lidar functionality
- Test of skills: take already existing v.in.pdal, and use PDAL C API (only demonstrating minimum functionality - grab points)
Improved color management
Current color management of raster and vector maps has several issues:
- Interactive editing of colors is rather limited: #3370
- We can't easily specify discrete color intervals (e.g. this ramp) for floating point data unless we reclass first, legend does not display that correctly
- and others...
A new color editing widget could be developed that would be integrated in r.colors, r3.colors, v.colors, t.rast.colors. It would allow simple editing of breaks (manual and automatic). Better support for discrete color tables for floating point data needs to be developed.
- Requirements: Python, wxPython, possibly some C
- Mentor: Anna Petrasova, Vaclav Petras
- Proposed by: Anna Petrasova
- Rating: medium
- Expected Outcomes: More user-friendly color management
- Test of skills: and others...
Enhance 3D rendering capabilities in GRASS GIS
Current 3D rendering capabilities in GRASS GIS (called NVIZ) are quite powerful, but many important features are missing. The current implementation is rather old and needs to be updated with more recent technologies. The following points (fixes and new features) should be addressed:
- fix rendering raster and vector data with transparency
- faster rendering of point clouds
- implement text rendering (for scale bars for example)
- review and fix problems with current rendering of 3D vectors
- possible new features would include volume rendering (ray casting for example), so far we can visualize only isosurfaces or slices of 3D rasters
- adding axes
- Requirements: C, OpenGL
- Mentor: Anna Petrasova
- Co-mentor: Vaclav Petras
- Proposed by: Anna Petrasova
- Rating: medium
- Expected Outcomes: reliable on-screen and off-screen 3D rendering on most platforms
- Test of skills: #2076, #3743
GRASS GUI: Single window layout
Currently, GRASS GIS GUI (wxGUI) has one Layer Manager window and one or more Map Display windows. This multiple window layout can sometimes be problematic and is not common. This project would try to develop an optional single window layout, similarly to GIMP. This project would include:
- detailed design of the behavior of current components + mockups
- refactoring some of the wxGUI components to untangle them and make them reusable
- implementing the actual layout and its behavior while keeping the multiple window layout working
- Requirements: Python, wxPython
- Mentor: Anna Petrasova, Vaclav Petras
- Proposed by: Anna Petrasova
- Rating: medium
- Expected Outcomes: enable switching between single- and multiple-window layout
- Test of skills: Develop a simple wxPython application, which would allow to switch between these two modes. This should demonstrate student knows wxPython and general GUI design.
New easy-to-use CLI and API for GRASS GIS
- TL;DR: Make running of GRASS GIS modules as easy as it is to run GDAL commands.
grass run r.slope.aspect elevation=elevation.tiff slope=slope.tiff aspect=aspect.tiff
- CLI like GDAL has.
- No GRASS Database, Location, Mapset to deal with.
- No import, export from user perspective.
- Reasonable defaults for things like region.
- CLI and API still allows user to specify any of the above.
- GRASS GIS requires GRASS GIS Database, Location and Mapset to be set up to maintain data consistency, efficiency and security. Unfortunately, this is cumbersome when GRASS GIS is not the primary tool user is using.
- There are different ways for calling GRASS modules without starting iterative GRASS session:
- Modules executed with the
--exec
interface (see the grass7 manual page >=7.2) GRASS_BATCH_JOB
: same as newer--exec
but through environmental variable and more limited- Use
grass.script.setup
package from GRASS GIS (requires boilerplate to add the packages on path first) - Use the standalone
grass_session
package (new, see here) - Set up environmental variables and "RC file" yourself (the classic method).
- Modules executed with the
- None of these allows the user to skip the database setup phase. This leads to the need for constant reimplementing of setup, import and export steps in various software and environments including user scripts (in Bash, Python, R), QGIS Processing, gvSIG/SEXTANTE, uDig/JGrassTools, and all the web/server/cloud tools and applications which use GRASS GIS as a processing backend (e.g. PyWPS server).
- GRASS GIS itself can make it easier for the callers (at least in most cases) by implementing an interface which would allow to use GRASS GIS modules without explicit dealing with GRASS GIS database.
- The command line call using the proposed interface would look like these:
grass run r.lake elevation=some/file.tiff water_level=10 lake=some/new/file.tiff coordinates=100,520 grass run r.slope.aspect elevation=file://.../elevation.tiff aspect=file://...aspect.tiff grass run r.slope.aspect elevation=https://.../elevation.tiff.zip aspect=file://...aspect.tiff
- Basic execution phases:
- The
grass
command would have to parse the command line, compare it with the module XML interface description, find the files which should be maps (either usingfile://
and ideally anything else), potentially download and uncompress, and import (or link) them, and then call the actual command (GRASS module).- The input maps could be linked (external) rather than imported (except for the cases when projection differs) which should be faster than import.
- Doing the work in GRASS rather than in the other software would allow GRASS to make the decision about the details, for example the data exchange (r.external vs r.import vs r.in.gdal - see comment from MarkusN for QGIS Processing issue or mailing list).
- GRASS Database would be created with an appropriate Location (projection based on input files or additional CLI input).
- The GRASS GIS Database, Location and Mapset should be created on the fly and deleted afterwards (the
.grassrc
wouldn't be used).
- The GRASS GIS Database, Location and Mapset should be created on the fly and deleted afterwards (the
- Computational region would be set based on input file(s) or additional CLI input.
- Module execution.
- The output maps could be be also linked (e.g. r.external.out) with projection same as input which is should be faster then export.
- Ideally export (as well as import) should work also with PostGIS and databases provided through GDAL/OGR.
- The
- Proposal should discuss and address how advanced things such raster algebra, multi-map inputs and outputs, temporal framework, cartography and visualization tools will work (or what are the limits).
- Use should be able to always specify the details manually:
grass run --mapset=/some/directory/grassdata/ncspm/practice1 r.lake elevation=some/file.tiff ... grass run --region="s=55600 n=60500..." --mask=some/mask.tiff r.lake elevation=some/file.tiff ... grass run --crs=EPSG:3358 --mask=some/mask.tiff r.lake elevation=some/file.tiff ... grass run --use=some/file_a.tiff --get=some/file_b.tiff r.slope.aspect elevation=file_a aspect=file_b
- The system behind the interface will be inherently fragile, so it is necessary to write large amount of tests which would check different combinations of data types and projections.
- All the underlying code is expected to be in Python, so the project should involve also creation of Python API on the way.
- Bonus tasks:
- Making this work for the GUI in the same way. It is expected that this would work for any
g.gui.*
modules too but implementing similar mechanism also for module dialogs is more work (but some basic implementation might be quite straightforward). - Making this connected to the standalone
grass_session
package. - Generalization of the API, so that it incorporates also the concept of remote sessions (see e.g. g.remote on GitHub)
- Making this work for the GUI in the same way. It is expected that this would work for any
- Current GRASS code involved:
- source:grass/trunk/lib/python/script/setup.py (library function(s) for Location setup in Python)
- source:grass/trunk/lib/init/grass.py (full GRASS GIS standard startup "script")
- See also:
- Tickets:
- #2424 PyGRASS does not work when GRASS is invoked from outside because it is not possible to change path to dynamic libraries in running process
- #2511 Starting GRASS in mapset which is not owned by the user
- #2579 Specify command to be executed as parameter of grass command (patch) and other suggestion for CLI, especially see the comment:15:ticket:2579 which summarizes the remaining issues after closing the ticket
- #2639 grass command should read commands from stdin as an interpreter would do
- #2678 GRASS starts even when Mapset is locked
- #2679 Drop or fix setting of Location and Mapset using environmental variables
- #2681 Remove legacy meaning of LOCATION variable
- #2685 Add ignore lock flag to grass command
- #3537 Add functionalities
--tmp-location
and--no-clean
- Documentation:
- Mailing list and wikis:
- Other projects (see also the ones linked in the text):
- QGIS Processing Grass7Algorithm.py source code
- uDig's JGrasstools source code
- SEXTANTE grass source code (broken link)
- PyWPS source code and PyWPS documentation (broken link)
- wps-grass-bridge source code (broken link)
- Related discussions on mailing list:
- Similar complex command line interfaces to learn from:
- Git (a classic example of subcommand interface)
- Docker (subcommand interface combined with running other commands inside a container)
- GeoGig (needs to get geospatial data in and out)
- ImageMagic
- GMT
- radical changes in CLI interface between versions 4 and 5
- new CLI has a single
gmt
command and subcommands
- Tickets:
- Test and training tasks:
- Extend
--exec
functionality:- Add
--tmp-mapset
which runs--exec
in a database/location/mapset which is created at the beginning and deleted at the end (database/location exists before and after). (See also--tmp-location
, #3537, #3585, and r72790.) - Add
--clean
(current default) and--no-clean
which say if--exec
should clean the.tmp
directory in the Mapset (for parallel execution). (See also #3537.) - Add
--lock
(current default) and--no-lock
which say if--exec
should lock the Mapset (for parallel execution). See also #2685 and the-f
flag. - Add
--region
to set a temporary computational region for the execution, e.g.--region="raster=raster_name"
- Add
--import-raster=some/file.tiff
which imports (r.in.gdal or r.import) a raster file (same for vector). - Add
--link-raster=some/file.tiff
which links (r.external) a raster file (same for vector). - Add
--export-raster=some/file.tiff
which exports (e.g. r.out.gdal) a raster file (same for vector). - Add
--link-output-raster=some/file.tiff
which creates (r.external.out) a new (output) raster file (same for vector).
- Add
- Add features to
grass
executable interface:- Make it possible to associate
*.gxw
files withgrass
executable (#1204) or at least add--gui-workspace
or preferably just recognize it in the command line (distinguish it from database/location/mapset).
- Make it possible to associate
- Solve one of the tickets linked above.
- Extend
- Requirements:
- Student needs to show understanding of the GRASS GIS Database structure and significantly extend on text above in the proposal.
- Language: Python
- Mentors: Vaclav Petras
- Co-mentors: Pietro Zambelli
- Proposed by: Vaclav Petras
Tips for students
- If you have your own ideas we encourage you to propose them. Explain them on the grass-dev mailing list.
- If you like some idea here or from previous yeas, write about it on grass-dev mailing list and any ideas of your own which could improve it.
- Follow some good practices in your ideas and proposals:
- Stress why the project would be useful.
- Show that you know how you will proceed. That is, make sure that you can demonstrate that the proposal is feasible in the given time frame.
- Be specific in the implementation (or at least as specific as you can).
- Explain what the final product will look like and how it will work. Perhaps you can add some drawings or mock-ups. (here in a wiki page)
- Explain how the idea relates to existing GRASS GIS functions, features, and needs.
- Do not include steps such as "install GRASS", "compile GRASS libraries (on my machine)", "read about the API". You should do this before applying to GSoC.
- Compile GRASS GIS 7 (trunk) from source and prepare environment for development:
- See links appropriate for you at https://grass.osgeo.org/development/how-to-start/.
- If you get stuck with the setup, feel free to consult the grass-user mailing list.
- Familiarize yourself with wiki:Submitting rules.
- Prove your worth by being active on the GRASS mailing lists (grass-user, grass-dev), fix some bugs, and/or implement some (smaller) features, or write some (simpler) GRASS module, and post it to mailing list. There's no better way to demonstrate your willingness and abilities. You should start even before you apply to GSoC.
- Also note that fixing existing bugs and/or implementing enhancements will be a part of student evaluation.
- Every year GRASS GIS hopes to participate and participates in GSoC as part of the OSGeo Foundation's GSoC program umbrella. See the official OSGeo template for application details and other important information at the OSGeo GSoc Ideas page.