
 

Proposal for GSoC 2018 
Implement Geospatial Data Viewer in pgAdmin4 for PostGIS 

 

Contact Details 

● Name: Xuri Gong 
● Nickname: Suri 
● Country: China 
● Email: xurigoong@gmail.com 
● Phone: +86 18811785238 
● Github: https://github.com/Gooong 
● Personal blog: https://gooong.cn 
● LinkedIn: https://www.linkedin.com/in/xurigong 

 

Project 

Project Name 

Implement Geospatial Data Viewer in pgAdmin4 for PostGIS 

 

Project Description 

pgAdmin is the GUI management tool for PostgreSQL. The latest version           
pgAdmin4 is web-based and written in Python and jQuery with Bootstrap, using            
the Flask framework. But currently there is no geospatial data viewer in            
pgAdmin4, and external applications, such as QGIS are required if we want to             
browser the data in a map. It’s not convenient for users to view geometries              
directly in pgAdmin4 “Data Output” table panel. 

I propose to implement a geospatial data viewer in pgAdmin4 that will allow             
users to view the tables in a spatial database and the results of queries executed.               

mailto:xurigoong@gmail.com
https://github.com/Gooong
https://gooong.cn/
https://www.linkedin.com/in/xurigong
https://www.linkedin.com/in/xurigong


 

With the viewer I intend to develop, users can directly view geospatial data on a               
map within the pgAdmin4 GUI. Refer to the project wiki to get more detail. 

For future development, the viewer can be expanded for selecting and editing            
geospatial data directly in the GUI.  

 

Predesign 

Interface Design: pgAdmin4 web interface uses several panels to display the           
result of queries. As a preliminary design, I propose to develop an additional             
panel to display the map within (see Figure 1). The browser renders both the              
grid panel to show table and the viewer panel to show map after each query.               
Then users can browse the geometries by zooming and panning in the map. 

 

Figure 1: Geo Viewer Panel 

 

Program Flow Design: After each user query, the browser receives the output            
data if the query succeeds. Then the “Data Output” renders table to show output              
data. If the data contains geometry data such as point, polyline and polygon,             
then the program will parse the data (maybe in different format such as WKB,              
WKT, GeoJSON etc.) and render “Geo Viewer” panel to show map (see Figure             
2). 

https://trac.osgeo.org/postgis/wiki/GoogleSummerCode2018


 

 

Figure 2: Flow Chart 

 

Technology Roadmap: Since pgAdmin4 is web based, I will need to use            
JavaScript library for web mapping. Between the two main web mapping           
libraries: OpenLayers and Leaflet, I prefer the former because OpenLayers is a            
lot more mature than Leaflet and support various formats of geometry, which            
will make it easier to parse the query result. Then only minor changes need to be                



 

made on the server side and the main part of the coding work is to implement                
some specific functions to parse data and render map in “sqleditor.js” file.  

More to Consider:  

● Geometry and Geography. PostGIS supports both Geometry (based on         
the OGC Simple Features) and Geography (spatial features represented         
on "geographic" coordinates) data type. The viewer should be able to           
handle data in both types. 

● 2d, 3dm, 3dz and 4d geometries. OGC “Simple Features” format only           
support 2d geometries and PostGIS EWKT/EWKB extends the format by          
adding 3dm, 3dz, 4d coordinates. I will decide if the viewer should            
support 3d and 4d geospatial data. Since there is no 3d rendering api in              
OpenLayers currently, I may use OL-Cesium library if 3dm, 3dz and 4d            
geometries are required to be supported.  

● Coordinate system. PostGIS supports different kinds of geographic        
coordinate system and projection system and there are over 3000 known           
spatial reference systems in spatial_ref_sys table. It’s not elegant if the           
viewer just renders data ignoring the coordinate system. So the program           
is supposed to transform or reproject the coordinates before rendering          
web map. The JavaScript library Proj4js can transform coordinates from          
one coordinate system to another, including datum transformations. In         
addition, it can be easily integrated into OpenLayers to transform          
coordinates. The example can be found here. 

● Multi geospatial columns. Sometimes there are two or more geospatial          
columns in the query result. Moreover, the columns can be different geo            
types and in different coordinate system. For example, points in Mercator           
projection and polylines in UTM projection. Thus the program can’t          
render all the columns in one single map because of different projection            
systems. My solution is to render only one column in one map if the              
coordinate system conflict with each other. And the viewer will offer           
column options so that users can choose which column to display. 

● Testing. The regression framework in pgAdmin4 is designed to execute          
unit tests for server-side code. It’s required to place test cases under the             
/tests directory of the respective module for tests. For JavaScript code, I            
will use Karma to run tests. 

http://openlayers.org/ol-cesium/
http://proj4js.org/
https://openlayers.org/en/latest/examples/wms-image-custom-proj.html
http://karma-runner.github.io/2.0/index.html


 

Timeline 

Community Bonding Period (April 24 - May 14) 

● Introduce myself and this project in pgAdmin4, PostGIS and SoC mailing           
list.  

● Remain constant touch with my mentors using Google Hangouts. Set up           
user requirements and discuss the design details with mentors. Settle the           
final design according to user requirements and feasibility. 

● Discuss with mentors about the implementation plan. 
● Try to fix bugs to get further understanding for pgAdmin4 source code            

and require.js lib. 
● Set up dev environment and my wiki page for TODO list and weekly             

report. 

 

Official Coding Period (May 15 - August 16) 

Week 1 (May 15 - 20) 

● Define server side (Flask API) and client side (JavaScript) classes and           
functions according to the final design. 

● Create static web UI for viewing map. 

 

Week 2 - 3  (May 21- June 3) 

● Implement parse_geo_data function to parse the query result data in          
different formats. 

● Write document and test the parse_geo_data function. 
● Create basic map that can render the features with WGS84 Web Mercator            

coordinates. 

 

Week 4 (June 4 - June 10) 

● Implement convert projection function using Proj4js lib. Support features         
with coordinate system that is defined in spatial_ref_sys table. 

http://proj4js.org/


 

● Write document and test the function. 

 

* First evaluation period (June 11 - 15) 

● Deliver the parse_geo_data function and test result. 
● The viewer can parse and render geospatial data in different formats and            

coordinate systems. 

 

Week 5 - 6 (June 11 - June 24) 

● Implement the column options that allow users to choose which          
geospatial data column to render. 

● Update web UI and add column options. 

 

Week 7 - 8 (June 25 - July 8) 

● Create and execute unit tests in the regression frame for all modules to             
help catch regressions in the code. 

● Check the code style to meet the pgAdmin coding standards. 
● Write documentation for the viewer. 

 

* Second evaluation period (July 9 - 13):  

● Deliver the documentation and tests for the viewer. 
● The viewer is nearing completion and can support options for users to            

choose which data column to render. 

 

Week 9 (July 9 - 15) 

● Fix bugs and update document. 

 

Week 10 - 12 (July 16 - August 5) 

● Pull request for code review and merge. 
● Buffer time for unexpected delay. 

https://www.pgadmin.org/docs/pgadmin4/dev/coding_standards.html


 

* Final evaluation period (August 7 - 14): 

● Deliver the working implementation of geospatial data viewer. 
● Wrap up the project and submit the final evaluation of my mentors. 

 

 

Figure 3: Gantt Chart 

 

Do you understand this is a serious commitment, equivalent to a full-time            
paid summer internship or summer job? 

> Yes, I understand. I will commit my full time in this project and can              
spend at least 40 hours per week. I have great passion in coding and              
implementing the data viewer. I am willing to pay my efforts in making the tool               
more convenient to use.  

 

Do you have any known time conflicts during the official coding period? 

> No, I don’t have any time conflicts with the official coding time. 

 



 

Extra Information 

Studies 

I am an undergraduate student in Peking University. I major in GIS science and              
use PostGIS very frequently for data storage and analysis.  

This project will definitely contribute to my study because it will not only make              
it more convenient for me to view geospatial data in PostGIS, but also help me               
improve skills in web mapping, coding, writing documentation and getting          
involved in open source community.  

 

Programming and GIS 

I am familiar with Python, C/C++, Java and have the basic knowledge of html,              
JavaScript and CSS. Also, I have the experience in using Flask framework and             
OpenLayers. I use Window 10 and Ubuntu 16.04 LTS for daily basis.  

As a GIS student, I use GIS software and development tools almost every day. I               
use PostGIS, ArcMap, QGIS, ENVI to for spatial analysis and OpenLayers,           
GeoTools, Arcpy, GeoServer for developing. I have the knowledge of          
geospatial data (e.g. projection system, spatial analysis and mapping) as well as            
part of OGC standards (e.g. Simple Features Interface Standard, WMS, and           
WFS). Here are my two personal GIS projects: 

● Weather Map of China. The project is to show the real-time weather in             
China. I develop a web crawler to get real-time weather data of each             
region in China (see Figure 4), and then display the result in web map              
using OpenLayers. The weather data and geojson data are published using           
Flask API. Users can browse each place by dragging, clicking, scrolling           
and searching. Please click here to view the Weather Map. The source            
code is available on my github. 

https://weather.gooong.cn/
https://github.com/Gooong/WeatherMap


 

 

Figure 4: Weather Map 

● Light GIS. A light GIS desktop software for showing, querying, editing           
and rendering map. It is written in C# from the scratch without any             
third-party library. The source code is available on my github. 

 

Figure 5: Light GIS 

https://github.com/Gooong/LightGIS


 

GSoC participation 

This is my first time to apply for Google Summer of Code. I did not submit a                 
proposal to any other organisation. 
 

 

 


