

Building Symbol Libraries with Autodesk MapGuide®

Enterprise

Robert Bray – Autodesk, Inc.

While not exposed to end users through Autodesk MapGuide Studio 2008, Autodesk MapGuide

Enterprise 2008 includes new cartographic capabilities that can be used to build custom symbol

libraries. This class will provide an introduction to MapGuide’s new cartographic model, show

how to create custom symbols and use them to symbolize points and lines, show how to create

and use compound symbols, and how to create data driven symbols. The following examples

illustrate some of the capabilities of MapGuide’s new cartographic model.

Custom line styles and patterns.

Repeating line labels and directional

arrows.

Ability to offset cartographic symbols

from the feature geometry.

A more consistent and accurate way

to define cased-line styles.

Use of symbols on lines for labeling,

e.g. highway shields, utility symbols,

etc.

An Overview of the New Cartographic Model
The new cartographic model is comprised of two new XML resource types Simple Symbol

Definition and Compound Symbol Definition, as well as a related set of enhancements to the

Layer Definition resource type as shown in the following diagram.

The Simple Symbol Definition resource type supports the definition of a symbol based on vector

geometry, an image, or text. In addition a Simple Symbol Definition can specify how it is applied

when used to stylize point, line, or area geometry. Finally the Parameter Definition specifies

which values in the Simple Symbol Definition can be overridden by an FDO property value or

expression during stylization.

The Compound Symbol Definition resource type supports combining multiple Simple Symbols to

create a composite symbol. This is useful for creating cased lines or adding a repeating graphic

at pre-defined intervals along a line (e.g. highway shields or directional arrows).

To support the new Symbol Definition resource types, the Layer Definition resource type has

been modified to include a Composite Type Style element in addition to the Point Type Style,

Line Type Style, and Area Type Style elements supported in the Autodesk MapGuide 2007

release. This new Composite Type Style element supports theming rules as before, but makes

use of the new Symbol Definition resource types rather than a fixed set of stylization options per

geometry type.

Simple and Compound Symbol Definition resources are standalone resource types that can be

shared across any number of Layer Definitions. By creating folders of these resource types it is

possible to create a symbol library that is usable across and organization.What’s the Deal, Why

no UI in Autodesk MapGuide Studio 2008?

The implementation of the new cartographic model in Autodesk MapGuide 2008 is incomplete.

The status of the implementation in Autodesk MapGuide 2008 and MapGuide Open Source

1.2.0 is as follows:

 Symbol definition usage with point features is fully functional.

 Symbol definition usage for highway shields and other linear annotation is fully

functional.

 Complex line joins may or may not provide expected results, depending on the symbol

definition.

 Symbol definition usage for area features is not supported.

The upcoming release of MapGuide Open Source 2.0 will have more complete support for using

symbol definitions for line and area features, finer grained control over rendering passes,

support for angular offsets relative to the geometry, and a bunch of bug fixes. Future releases of

Autodesk MapGuide Enterprise will most likely incorporate these changes as well.

Samples Discussed in this Class

In this class we’ll create a small symbol library and use it to update the cartography in the City of

Redding sample data set. In particular we’ll create an international hospital symbol, create a

less gaudy railroad line style, and create new styles for the highways and roads (incorporating

highway shields where appropriate). The images below show the map before and after:

Simple Symbols and Point Usage
The structure of the Simple Symbol

Definition is shown at right. The Name and

Description elements are self explanatory,

Name is mandatory while Description is

optional, but highly recommended if you

plan to build reusable libraries of symbols.

The Graphics element defines the symbol

in terms of vector geometry, an image,

text, or some combination of these. The

exact structure of the Graphics element

will be covered in the next section. The

Resize Box element specifies the center

and size of the symbol, and whether the

bounds of the symbol should grow based

on the content of the Graphics element.

More detail on this behavior will be provided a little later in the document. If the Resize Box

element is not specified the size of the symbol will be derived from the content of the Graphics

elements. The Point, Line, and Area Usage elements define how this symbol should be used for

the various geometric primitives. All are optional and if not specified default behavior will be

supported. Finally the Parameter Definition element defines a collection of parameters that can

be substituted at runtime based on an FDO expression or property value. Both the Usage and

Parameter Definition elements will be discussed in more detail a little later in this document.

Defining Graphics

All of the Graphics element types start with a Resize Control element that specifies how this

graphic element interacts with the Resize Box of the symbol. This must evaluate to one of:

ResizeNone (default), AddToResizeBox, or AdjustToResizeBox. AddToResizeBox means the

element's graphical extent is added to the resize box, but the element is not resized or

repositioned if the resize box grows. AdjustToResizeBox means the element is resized and

repositioned relative to the resize box, but its extent is not added to the box. ResizeNone means

the element does not interact with the resize box.

Graphics as a Path

The structure of the Graphics element for path

based vector geometry is shown at right. The

format of the Geometry element is a sequence of

segments, each represented by a letter indicating

the segment type followed by one or more

parameters. Uppercase letters denote absolute

values and lowercase letters denote relative

values. Segment types can be one of "M"

(moveto), "L" (lineto), "H" (horizontal lineto), "V"

(vertical lineto), "A" (arcto), or "Z" (close

segment). All coordinates are specified in

millimeters and defined in the Cartesian plane.

The format and behavior of each of these

segment types is described in the following table.

Command Syntax Description

Move M x,y
or
m x,y

Establishes a new current endpoint. Every geometry may specify
one or more figures. The first figure in a geometry must begin with
a Move command.

Line L x,y
or
l x,y

Draws a straight line from the current point to the specified point.

Horizontal
Line

H x
or
h x

Draws a horizontal line from the current point to the x coordinate.

Vertical Line V y
or
v y

Draws a vertical line from the current endpoint to the specified y
coordinate.

Arc A xr,yr rx
 fArc
 fSweep
 x,y
or
a xr,yr rx
 fArc
 fSweep
 x,y

Draws an elliptical arc from the current endpoint to the specified
point (x,y).

 xr defines the x radius

 yr defines the y radius

 rx defines the x-axis rotation in degrees

 fArc identifies the arc segment to use, a value of 1 specifies to
use the large sweep 180 degrees or greater, a value of 0
specifies to use the small sweep less than 180 degrees.

 fSweep defines direction, if fSweep is 1, the arc is drawn
clockwise. If fSweep is 0, the arc is drawn counter-clockwise.

Close Z
or
z

Draws a straight line from the current endpoint to the first point of
the current figure and then ends the figure.

For example to draw a 5 mm square box the Geometry element would be specified as follows:

Geometry: M -2.5,2.5 H 2.5 V -2.5 H -2.5 Z

Arcs are somewhat more complex and the following table should help explain the fSweep and

fArc parameters.

fArc = 0, fSweep = 0

fArc = 0, fSweep = 1

fArc = 1, fSweep = 0

fArc = 1, fSweep = 1

A concrete example of Arc usage will be shown a little later in this document. One final

important point on the path element is how fills are handled. Which portions of a figure to fill is

determined using an even-odd fill algorithm. This is illustrated as follows:

The other elements within the Path element are optional. Fill Color and Line Color are specified

in ARGB hexadecimal format with an alpha transparency. Like all other values in symbol

definitions Line Weight is specified in millimeters. Line Weight Scalable is a boolean value which

specifies whether the line weight scales with the symbol. Line Cap specifies the cap type to use

at the ends of each segment in the path outline which must evaluate to one of: None, Round

(default), Triangle, or Square. Line Join specifies the join type to use at each vertex in the path

outline which must evaluate to one of: None, Bevel, Round (default), or Miter. Finally the Line

Miter Limit specifies the limit to use when drawing miter joins. A miter join is trimmed if the ratio

of the miter length to line weight is greater than the miter limit. If specified this must be greater

than zero; the default value is 5.

Graphics as an Image

The structure of the Image element for defining graphics as an image is shown at right. The

image itself may either be specified in the Content

element as base 64 encoded PNG or in the Reference

element as a link to the image stored as Resource

Data within the resource database. The Size X and

Size Y elements specify the size of the symbol in

millimeters. Size Scalable is a boolean value which

specifies whether the image sizes scale with the

symbol. The Angle element specifies the rotation angle

of the image in symbol space, in degrees. The Position

X and Position Y elements specify the image center

within symbol space in millimeters.

Graphics as Text

The structure of the Text element for defining graphics as text is shown at right. The Content

element specifies the text to render for the symbol. The FontName, Bold, Italic, and Underlined

elements specify the font and attributes used to render

the text. The Height element specifies the text height in

millimeters. The Height Scalable element is a boolean

value which specifies whether the font height scales with

the symbol. Angle specifies the rotation angle of the text

in symbol space, in degrees. Position X and Position

Yspecify the x and y coordinate of the text within symbol

space in millimeters. The alignment values are relative to

this coordinate. The Horizontal Alignment element

specifies the horizontal alignment of the text box relative

to its position, which must evaluate to one of: Left, Center

(default), or Right. The Vertical Alignment element

specifies the vertical alignment of the text box relative to

its position, which must evaluate to one of: Bottom,

Baseline, Halfline (default), Capline, or Top. The

Justification element specifies the horizontal justification

of individual lines of text in a multi-line text string, which

must evaluate to one of: Left, Center, Right, Justified, or

FromAlignment (default). The Line Spacing element specifies the spacing between individual

lines of text in a multi-line text string, as a multiple of the font height. The Text Color and Ghost

Color elements specify the color of the text and ghosting effect in ARGB hexadecimal format.

The Frame element provides options for drawing a rectangular frame around the text.

Point Usage

The Point Usage element provides control over how a symbol is used to symbolize point

features. The structure of the Point Usage element is shown at right. The Angle Control element

specifies how the symbol angle is defined, which must evaluate to one of: FromAngle (default)

or FromGeometry. The Angle element specifies the symbol angle, in

degrees and only applies if AngleControl evaluates to FromAngle. The

Orgin Offset X and Y elements specifies the horizontal and vertical

offset to apply to the symbol origin, in mm. This offset is applied before

the symbol is scaled and rotated.

Defining the International Hospital Symbol

Now that the basics of symbol definition and point usage have been explained, let’s look at how

to define an international hospital sign to replace the basic cross used on the Hospital layer.

<?xml version="1.0" encoding="UTF-8"?>

<SimpleSymbolDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="SymbolDefinition-1.0.0.xsd" version="1.0.0">

 <Name>Hospital</Name>

 <Description>International Hospital Symbol</Description>

 <Graphics>

 <Path>

 <Geometry>M -2.5,2.5 H 2.5 V -2.5 H -2.5 Z</Geometry>

 <FillColor>FF0000FF</FillColor>

 <LineColor>FFFFFFFF</LineColor>

 <LineWeight>0.75</LineWeight>

 <LineWeightScalable>false</LineWeightScalable>

 </Path>

 <Path>

 <Geometry>M -1.0,1.25 V -1.25 Z M 1.0,1.25 V -1.25 Z M -1.0,0.0 H 1.0 Z</Geometry>

 <LineColor>FFFFFFFF</LineColor>

 <LineWeight>0.75</LineWeight>

 <LineWeightScalable>false</LineWeightScalable>

 </Path>

 </Graphics>

 <PointUsage/>

 <ParameterDefinition/>

</SimpleSymbolDefinition>

This symbol uses two Geometry elements, one to draw the blue box with a white border and

one to draw the “H”. The Point Usage element is empty since we do not want the symbol rotated

and we’ll use the center of the symbol as the insertion point.

Layer Definition Updates to Support Symbol Definitions

The structure of the new Composite Type Style element of Layer Definition is shown in the

following diagram. In this document we’ll ignore Composite Type Style and Composite Rule as

they are functionally equivalent to the Point, Line, and Area equivalents in previous versions of

Layer Definition.

However the Symbol Instance element is new and interesting. Symbol Instance specifies the

symbol(s) to use for a particular Composite Rule and provides control over how each symbol is

rendered. First note that a Symbol Definition can either be referenced by the Symbol Instance

via the Resource Id element or the definition of the symbol may be embedded within the Symbol

Instance itself. The Parameter Overrides element will be covered later in the document, so we’ll

skip over that for now. Scale X and Y specify the additional amount to scale the symbol

horizontally and vertically. Insertion Offset X and Y applies only to point symbols and specifies

the additional amount to offset the symbol horizontally, in mm in device units, after scaling and

rotation have been applied. Size Context specifies whether the symbol sizes are with respect to

the map or the user's display device. Draw Last is a boolean value which specifies whether the

symbol is drawn as part of a final rendering pass (e.g. for labeling). Check Exclusion Region is a

boolean value which specifies whether to render this symbol only if its graphical extent does not

overlap the exclusion region. If the positioning algorithm generates multiple candidate symbol

positions and this setting is true, then only the first non-overlapping candidate is rendered.

Similarly Add To Exclusion Region is a boolean value which specifies whether the graphical

extent for this symbol instance should be added to the exclusion region (if it is rendered). Finally

the Positioning Algorithm element specifies the algorithm used to generate candidate positions

for the symbol. If specified this must evaluate to one of: Default or EightSurrounding. Default

means generate one position using the feature geometry (used for normal rendering).

EightSurrounding means generate eight positions surrounding the feature geometry (used when

labeling point features).

The Updated Hospital Layer

Now let’s take a look at our updated Hospital Layer Definition.

<?xml version="1.0" encoding="UTF-8"?>

<LayerDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="LayerDefinition-1.1.0.xsd" version="1.1.0">

 <VectorLayerDefinition>

 <ResourceId>Library://MapsWithStyle/Redding/Basemap/Data/Hospital.FeatureSource</ResourceId>

 <FeatureName>Default:Hospital</FeatureName>

 <FeatureNameType>FeatureClass</FeatureNameType>

 <PropertyMapping>

 <Name>NAME</Name>

 <Value>NAME</Value>

 </PropertyMapping>

 <Geometry>Geometry</Geometry>

 <VectorScaleRange>

 <CompositeTypeStyle>

 <CompositeRule>

 <LegendLabel>Hospital</LegendLabel>

 <CompositeSymbolization>

 <SymbolInstance>

 <ResourceId>Library://MapsWithStyle/CartoSymbols/Hospital.SymbolDefinition</ResourceId>

 <ParameterOverrides>

 </ParameterOverrides>

 </SymbolInstance>

 </CompositeSymbolization>

 </CompositeRule>

 </CompositeTypeStyle>

 </VectorScaleRange>

 </VectorLayerDefinition>

</LayerDefinition>

Note that because there is no theming there is a single Composite Rule and within that a single

Composite Symbolization and Symbol Instance referring to the Hospital Symbol Definition.

Simple Symbols and Line Usage
The Line Usage element of Simple Symbol Definition provides control over how a symbol is

used to symbolize line features. The structure of the Line Usage element is shown at right.

Within the Line Usage element the Angle Control element specifies how the symbol angle is

defined, which must evaluate to one of: FromAngle or FromGeometry (default). The Units

Control element specifies whether the distribution parameters are interpreted as Absolute

(default) values (in mm) or Parametric values. The Vertex Control element specifies the symbol

behavior at vertices and must evaluate to one of:

OverlapNone (default), OverlapDirect, OverlapNoWrap, or

OverlapWrap. The Angle element only applies if AngleControl

evaluates to FromAngle and it specifies the symbol angle in

degrees. The Start Offset and End Offset element specifies

where the symbol distribution begins, relative to the start or

end of the feature. The Repeat element allows you to repeat

the rendering of a symbol along the line and specifies the

separation between them in millimeters. The Vertex Angle

Limit, Vertex Join, Vertex Miter Limit, and Default Path

elements are not yet supported in Autodesk MapGuide 2008

and hence will not be discussed here.

Defining Line Patterns

Dashed line patterns can be defined by specifying the geometry for a single complete sequence

of dashing and then specifying a Repeat value within the Line Usage element. For example:

Geometry: M 0,0 H 4 Z M 6,0 H 2 Z

Repeat: 10

Results in:

Defining Lines with Decorations

Crossing decorations can be added to line patterns by simply adding the additional geometry

and repeating the pattern as before. For example:

Geometry: M -2.5,0.0 H 2.5 Z

 M 0.0,0.5 V -0.5 Z

Repeat: 5

Results in:

Defining the New Railroad Symbol

Now that the line usage has been explained, let’s look at how to define the new railroad symbol

to replace the MapGuide’s standard Railroad line style.

<?xml version="1.0" encoding="UTF-8"?>

<SimpleSymbolDefinition version="1.0.0" xsi:noNamespaceSchemaLocation="SymbolDefinition-

1.0.0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Name>Railroad</Name>

 <Description> Railroad (single track)</Description>

 <Graphics>

 <Path>

 <Geometry>

 M -2.5,0.0 H 2.5 Z

 M 0.0,0.5 V -0.5 Z

 </Geometry>

 <LineColor>FF000000</LineColor>

 <LineWeight>0.125</LineWeight>

 </Path>

 </Graphics>

 <LineUsage>

 <VertexControl>'OverlapWrap'</VertexControl>

 <StartOffset>0</StartOffset>

 <Repeat>5.0</Repeat>

 </LineUsage>

 <ParameterDefinition/>

</SimpleSymbolDefinition>

Compound Symbols
Compound symbols can be used to create cased lines and to add decorative symbols at the

start, end, or at repeating intervals along a line. The structure of the Compound Symbol

Definition element is shown below.

Note that Compound Symbol Definitions simply allow you to aggregate multiple Simple Symbol

Definitions to create a more complex symbol. The simple symbols may either be referenced by

a resource identifier or may be embedded within the Compound Symbol Definition. For

simplicity we’ll use that approach throughout the remainder of this document, however if you are

defining libraries of reusable symbols you may wish to define them independently and use

references. The Rendering Pass element gives the symbol author fine grained control over the

draw order of each Simple Symbol within a Compound Symbol Definition.

Defining a Freeway with a Compound Symbol

To define a cased freeway symbol we’ll use a Compound Symbol Definition with two Simple

Symbol Definitions embedded within it as follows:

<?xml version="1.0" encoding="UTF-8"?>

<CompoundSymbolDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="SymbolDefinition-1.0.0.xsd" version="1.0.0">

 <Name>Freeway</Name>

 <SimpleSymbol>

 <SimpleSymbolDefinition>

 <Name>Outline</Name>

 <Graphics>

 <Path>

 <Geometry>M 0.0,0.0 H 5.0 Z</Geometry>

 <LineColor>FF000000</LineColor>

 <LineWeight>1.4</LineWeight>

 </Path>

 </Graphics>

 <LineUsage>

 <VertexControl>'OverlapWrap'</VertexControl>

 <StartOffset>0</StartOffset>

 <Repeat>5.0</Repeat>

 </LineUsage>

 <ParameterDefinition/>

 </SimpleSymbolDefinition>

 <RenderingPass>0</RenderingPass>

 </SimpleSymbol>

 <SimpleSymbol>

 <SimpleSymbolDefinition>

 <Name>Inner</Name>

 <Graphics>

 <Path>

 <Geometry>M 0.0,0.0 H 5.0 Z</Geometry>

 <LineColor>FFFF6464</LineColor>

 <LineWeight>0.8</LineWeight>

 </Path>

 </Graphics>

 <LineUsage>

 <VertexControl>'OverlapWrap'</VertexControl>

 <StartOffset>0</StartOffset>

 <Repeat>5.0</Repeat>

 </LineUsage>

 <ParameterDefinition/>

 </SimpleSymbolDefinition>

 <RenderingPass>1</RenderingPass>

 </SimpleSymbol>

</CompoundSymbolDefinition>

Note the RenderingPass elements clearly establish that the Outline is drawn first followed by the

Inner line. This ensures that the Freeway geometry intersections render correctly.

Adding a Shield Symbol

To add a shield to our Freeway definition we’ll add another Simple

Symbol Definition to our Freeway Composite Symbol Definition. The

shield will be composed of both a Path element to define the outline

and a Text element to contain the route number. The Arc geometry

for the Shield is shown to the right. The Simple Symbol XML

fragment that defines our Shield is as follows:

 <SimpleSymbol>

 <SimpleSymbolDefinition>

 <Name>Shield</Name>

 <Graphics>

 <Path>

 <ResizeControl>'AdjustToResizeBox'</ResizeControl>

 <Geometry>

 M -2.0,2.5

 A 1.0,0.5 0 0 0 0.0,2.5

 A 1.0,0.5 0 0 0 2.0,2.5

 A 3.0,3.0 0 0 1 0.0,-2.5

 A 3.0,3.0 0 0 1 -2.0,2.5

 Z

 </Geometry>

 <FillColor>FFFFFFFF</FillColor>

 <LineColor>FF0000FF</LineColor>

 <LineWeight>0.7</LineWeight>

 <LineWeightScalable>false</LineWeightScalable>

 </Path>

 <Text>

 <ResizeControl>'AddToResizeBox'</ResizeControl>

 <Content>'#'</Content>

 <FontName>'Arial'</FontName>

 <Height>4</Height>

 <PositionX>0</PositionX>

 <PositionY>0</PositionY>

 <HorizontalAlignment>'Center'</HorizontalAlignment>

 <VerticalAlignment>'Halfline'</VerticalAlignment>

 </Text>

 </Graphics>

 <ResizeBox>

 <SizeX>6</SizeX>

 <SizeY>6</SizeY>

 <PositionX>0</PositionX>

 <PositionY>0</PositionY>

 <GrowControl>'GrowInX'</GrowControl>

 </ResizeBox>

 <LineUsage>

 <AngleControl>'FromAngle'</AngleControl>

 <VertexControl>'OverlapNoWrap'</VertexControl>

 <Angle>0</Angle>

 <StartOffset>50</StartOffset>

 <EndOffset>50</EndOffset>

 <Repeat>200</Repeat>

 </LineUsage>

 <ParameterDefinition>

 </ParameterDefinition>

 </SimpleSymbolDefinition>

 <RenderingPass>2</RenderingPass>

 </SimpleSymbol>

Within this fragment there are several noteworthy things. First is the use of the Resize Box and

Resize Control elements. The Shields Path element sets the Resize Control value to

AdjustToResizeBox while the Text element sets the Resize Control value to AddToResizeBox.

Finally the Grow Control element in the ResizeBox is set to GrowInX. This allows the symbol to

grow in width to adapt to longer route numbers. Second note the Start Offset, End Offset, and

Repeat elements. Collectively these indicate that the shields should start 50 millimeters from the

beginning of the feature geometry, repeat every 200 millimeters, and the final shield should

appear 50 millimeters from the end of the feature geometry.

Data Driven Symbols
Every aspect of a Simple Symbol Definition whether standalone or as part of a Compound

Symbol Definition can be driven by FDO expressions. Symbol Definitions advertize this via the

Parameter Definition element. Symbol Instances in the Layer Definition supply values for

parameters via the Parameter Overrides element.

The structure of the Parameter Definition element is shown at right. Each Parameter Definition

element can contain zero or more Parameter elements. Each Parameter element must supply

an Identifier and a Default Value. Optionally values for Display Name, Description, and Data

Type elements can be supplied.

Again if you are building reusable

symbol libraries this metadata can

be extremely useful. The following

XML fragment shows a completed

Parameter Definition element:

<ParameterDefinition>

 <Parameter>

<Identifier>MY_PARAMETER</Identifie

r>

 <DefaultValue>0</DefaultValue>

 <DisplayName>Some

Parameter</DisplayName>

 <Description>A useful

description goes here.</Description>

 <DataType>Integer</DataType>

 </Parameter>

</ParameterDefinition>

Once the parameter is defined, replace the constant element values in the Symbol Definition

that you want to be specified dynamically with %MY_PARAMETER% (e.g. the parameter

identifier delimited by percent signs).

Going back to the Freeway symbol, we can now use a parameter to specify the route number

displayed in the shield. The updated XML fragment defining the Shield symbol now looks as

follows:

 <SimpleSymbol>

 <SimpleSymbolDefinition>

 <Name>Shield</Name>

 <Graphics>

 <Path>

 <ResizeControl>'AdjustToResizeBox'</ResizeControl>

 <Geometry>

 M -2.0,2.5

 A 1.0,0.5 0 0 0 0.0,2.5

 A 1.0,0.5 0 0 0 2.0,2.5

 A 3.0,3.0 0 0 1 0.0,-2.5

 A 3.0,3.0 0 0 1 -2.0,2.5

 Z

 </Geometry>

 <FillColor>FFFFFFFF</FillColor>

 <LineColor>FF0000FF</LineColor>

 <LineWeight>0.7</LineWeight>

 <LineWeightScalable>false</LineWeightScalable>

 </Path>

 <Text>

 <ResizeControl>'AddToResizeBox'</ResizeControl>

 <Content>%ROUTE_NUMBER%</Content>

 <FontName>'Arial'</FontName>

 <Height>4</Height>

 <PositionX>0</PositionX>

 <PositionY>0</PositionY>

 <HorizontalAlignment>'Center'</HorizontalAlignment>

 <VerticalAlignment>'Halfline'</VerticalAlignment>

 </Text>

 </Graphics>

 <ResizeBox>

 <SizeX>6</SizeX>

 <SizeY>6</SizeY>

 <PositionX>0</PositionX>

 <PositionY>0</PositionY>

 <GrowControl>'GrowInX'</GrowControl>

 </ResizeBox>

 <LineUsage>

 <AngleControl>'FromAngle'</AngleControl>

 <VertexControl>'OverlapNoWrap'</VertexControl>

 <Angle>0</Angle>

 <StartOffset>50</StartOffset>

 <EndOffset>50</EndOffset>

 <Repeat>200</Repeat>

 </LineUsage>

 <ParameterDefinition>

 <Parameter>

 <Identifier>ROUTE_NUMBER</Identifier>

 <DefaultValue>0</DefaultValue>

 <DisplayName>Route Number</DisplayName>

 <Description>The interstate number.</Description>

 <DataType>Integer</DataType>

 </Parameter>

 </ParameterDefinition>

 </SimpleSymbolDefinition>

 <RenderingPass>2</RenderingPass>

 </SimpleSymbol>

Note the ROUTE_NUMBER parameter is defined and the Content element of the Text

Geometry is now set to %ROUTE_NUMBER%.

Now to set the value of the expression a Parameter Override needs to be specified within the

Symbol Instance element in the Layer Definition. The structure of the Parameter Overrides

element is shown at right. Note that the Parameter Overrides element contains zero or more

Override element. Each Override element specifies an expression to use for a single parameter

of a specific symbol. The following XML fragment shows a completed Parameter Overrides

element:

<ParameterOverrides>

 <Override>

 <SymbolName>MySymbol</SymbolName>

 <ParameterIdentifier>

 MY_PARAMETER

 </ParameterIdentifier>

<ParameterValue>“MY_VALUE_FIELD"<

/ParameterValue>

 </Override>

</ParameterOverrides>

This fragment will replace the

%MY_PARAMETER% values in

a symbol called MySymbol with

the value from the

MY_VALUE_FIELD property of

the layers FDO feature class. To

make full use of the Freeway Symbol Definition, the completed Roads Layer Definition looks as

follows:

<?xml version="1.0" encoding="UTF-8"?>

<LayerDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="LayerDefinition-1.1.0.xsd" version="1.1.0">

 <VectorLayerDefinition>

 <ResourceId>Library://MapsWithStyle/Redding/Basemap/Roads.FeatureSource</ResourceId>

 <FeatureName>Default:Roads</FeatureName>

 <FeatureNameType>FeatureClass</FeatureNameType>

 <Geometry>Geometry</Geometry>

 <VectorScaleRange>

 <MaxScale>15000</MaxScale>

 <CompositeTypeStyle>

 <CompositeRule>

 <LegendLabel>'ART'</LegendLabel>

 <Filter>"ST_TYPE" = 'ART' OR "ST_TYPE" = 'COL'</Filter>

 <CompositeSymbolization>

 <SymbolInstance>

<ResourceId>Library://MapsWithStyle/CartoSymbols/ArterialCollector.SymbolDefinition</ResourceId>

 <ParameterOverrides>

 </ParameterOverrides>

 </SymbolInstance>

 </CompositeSymbolization>

 </CompositeRule>

 <CompositeRule>

 <LegendLabel>'FWY'</LegendLabel>

 <Filter>"ST_TYPE" = 'FWY'</Filter>

 <CompositeSymbolization>

 <SymbolInstance>

 <ResourceId>Library://MapsWithStyle/CartoSymbols/Freeway.SymbolDefinition</ResourceId>

 <ParameterOverrides>

 <Override>

 <SymbolName>Shield</SymbolName>

 <ParameterIdentifier>ROUTE_NUMBER</ParameterIdentifier>

 <ParameterValue>"RTNUM"</ParameterValue>

 </Override>

 </ParameterOverrides>

 </SymbolInstance>

 </CompositeSymbolization>

 </CompositeRule>

 <CompositeRule>

 <LegendLabel>'HWY'</LegendLabel>

 <Filter>"ST_TYPE" = 'HWY'</Filter>

 <CompositeSymbolization>

 <SymbolInstance>

 <ResourceId>Library://MapsWithStyle/CartoSymbols/Highway.SymbolDefinition</ResourceId>

 <ParameterOverrides>

 <Override>

 <SymbolName>Shield</SymbolName>

 <ParameterIdentifier>ROUTE_NUMBER</ParameterIdentifier>

 <ParameterValue>"RTNUM"</ParameterValue>

 </Override>

 </ParameterOverrides>

 </SymbolInstance>

 </CompositeSymbolization>

 </CompositeRule>

 <CompositeRule>

 <LegendLabel></LegendLabel>

 <CompositeSymbolization>

 <SymbolInstance>

 <ResourceId>Library://MapsWithStyle/CartoSymbols/Street.SymbolDefinition</ResourceId>

 <ParameterOverrides>

 </ParameterOverrides>

 </SymbolInstance>

 </CompositeSymbolization>

 </CompositeRule>

 </CompositeTypeStyle>

 </VectorScaleRange>

 </VectorLayerDefinition>

</LayerDefinition>

The roads layer is themed based upon the ST_TYPE property of the Roads feature class. Note

that both ST_TYPE = FWY and ST_TYPE = HWY use parameterized Symbol Definitions that

display the route number.

Summary
This course has provided an overview of the new cartographic model in Autodesk MapGuide

Enterprise 2008. While no support exists in the user interface of Autodesk MapGuide Studio

2008, you can use the techniques shown here to create a library of custom symbols and use

those in your MapGuide applications.

