How innovations thrive in GRASS GIS

Václav Petříček, Yann Chenin, Martin Landšád, Thomas Leppelt, Pietro Zambroni, Luca Debrahčí, Marthai Desta, Siered Gebert, and Markus Neteler

G O S G e o

North Carolina State University, USA (yaann.chenin, martinslandr, thomasleppelt, petrozambroni, lucedebrahi, markusneteler)

ERBD - Research Institute for Geospatial Energy, Italy (valterreno1986, researchdirections, eribditaly.it, vangelo8, Valterreno1986)

Acknowledgements

We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge the following in particular: Seed fund for GRASS GIS provided by the Open Source Geospatial Foundation (OSGeo) through the Administration Area. Endowment for the research direction "Natural Hazards" provided by the European Commission under the Horizon 2020 grant agreement No. 690951 (Project "European Landscape Observatory ELOPE"). A unique least cost path algorithm which is robust and easy to parallelize. A unique least cost path algorithm which is robust and easy to parallelize. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers.

Lidar Data Processing

The advanced power modules GRASS GIS’s end-user implemented originally specifically for lidar and remotely sensed earth observation facilities make use of very powerful and efficient algorithms.

Image Segmentation

• Improved temporal datasets are generated using LiDAR geometrical sensors. The advanced power modules GRASS GIS’s end-user implemented originally specifically for lidar and remotely sensed earth observation facilities make use of very powerful and efficient algorithms.

Digital elevation model interpolated from lidar data. Image processing library (PIL) used in the Open Source Geospatial Foundation (OSGeo) is used to create a digital elevation model from the lidar data.

Acknowledgements

We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge the following in particular: Seed fund for GRASS GIS provided by the Open Source Geospatial Foundation (OSGeo) through the Administration Area. Endowment for the research direction "Natural Hazards" provided by the European Commission under the Horizon 2020 grant agreement No. 690951 (Project "European Landscape Observatory ELOPE"). A unique least cost path algorithm which is robust and easy to parallelize. A unique least cost path algorithm which is robust and easy to parallelize. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers. We acknowledge all members of the GRASS GIS community both users and developers.