Changeset 38939
- Timestamp:
- Sep 1, 2009, 2:00:36 AM (15 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
grass/branches/develbranch_6/lib/gmath/ccmath_grass_wrapper.c
r38890 r38939 165 165 return solv(a[0],b, n); 166 166 } 167 168 167 169 /** 168 170 \brief Solve a symmetric positive definite linear system S*x = b. … … 171 173 \param b = array containing system vector b as input and solution vector x as output 172 174 \param n = dimension of system 173 \return: 0 -> normal exit 1 -> input matrix not positive definite175 \return: 0 -> normal exit; -1 -> input matrix not positive definite 174 176 */ 175 177 int G_math_solvps(double **a,double *b,int n) 176 178 { 177 solvps(a[0], b,n); 178 } 179 return solvps(a[0], b,n); 180 } 181 182 179 183 /** 180 184 \brief Solve a tridiagonal linear system M*x = y. … … 192 196 return; 193 197 } 198 199 194 200 /* 195 201 \brief Solve an upper right triangular linear system T*x = b. … … 200 206 \return value: f = status flag, with 0 -> normal exit, -1 -> system singular 201 207 */ 202 203 208 int G_math_solvru(double **a,double *b,int n) 204 209 { 205 210 return solvru(a[0], b, n); 206 211 } 212 213 207 214 /** 208 215 \brief Invert (in place) a general real matrix A -> Inv(A). 209 210 216 211 217 \param a = array containing the input matrix A. This is converted to the inverse matrix. … … 217 223 return minv(a[0], n); 218 224 } 225 226 219 227 /** 220 228 \brief Invert (in place) a symmetric real matrix, V -> Inv(V). … … 230 238 } 231 239 232 /** 233 240 241 /** 234 242 \brief Invert an upper right triangular matrix T -> Inv(T). 235 236 243 237 244 \param a = pointer to array of upper right triangular matrix, This is replaced by the inverse matrix. … … 243 250 return ruinv(a[0], n); 244 251 } 252 253 245 254 /* 246 255 ----------------------------------------------------------------------------- … … 252 261 253 262 \brief Compute the eigenvalues of a real symmetric matrix A. 254 255 263 256 264 \param a = pointer to array of symmetric n by n input matrix A. The computation alters these values. … … 263 271 return; 264 272 } 273 274 265 275 /** 266 276 \brief Compute the eigenvalues and eigenvectors of a real symmetric matrix A. … … 282 292 return; 283 293 } 294 295 284 296 /* 285 297 \brief Compute the maximum (absolute) eigenvalue and corresponding eigenvector of a real symmetric matrix A. … … 359 371 ------------------------------------------------------------------------------- 360 372 */ 373 374 361 375 /** 362 376 \brief Compute the singular values of a real m by n matrix A. … … 374 388 return svdval(d, a[0], m, n); 375 389 } 390 391 376 392 /** 377 393 378 394 \brief Compute singular values when m >> n. 379 395 380 381 396 \param d = pointer to double array of dimension n (output = singular values of A) 382 397 \param a = pointer to store of the m by n input matrix A (A is altered by the computation) … … 389 404 return sv2val(d, a[0], m, n); 390 405 } 406 407 391 408 /* 392 409 \brief Compute the singular value transformation S = U~*A*V. 393 394 410 395 411 \param d = pointer to double array of dimension n (output = singular values of A) … … 406 422 } 407 423 424 408 425 /** 409 426 \brief Compute the singular value transformation when m >> n. 410 411 427 412 428 \param d = pointer to double array of dimension n (output = singular values of A) … … 422 438 return sv2uv(d, a[0], u[0], m, v[0], n); 423 439 } 440 441 424 442 /** 425 443 426 444 \brief Compute the singular value transformation with A overloaded by the partial U-matrix. 427 428 445 429 446 \param d = pointer to double array of dimension n
Note:
See TracChangeset
for help on using the changeset viewer.
