| 1 | # -*- coding: utf-8 -*-
|
|---|
| 2 | # Copyright (C) 2012, Almar Klein, Ant1, Marius van Voorden
|
|---|
| 3 | #
|
|---|
| 4 | # This code is subject to the (new) BSD license:
|
|---|
| 5 | #
|
|---|
| 6 | # Redistribution and use in source and binary forms, with or without
|
|---|
| 7 | # modification, are permitted provided that the following conditions are met:
|
|---|
| 8 | # * Redistributions of source code must retain the above copyright
|
|---|
| 9 | # notice, this list of conditions and the following disclaimer.
|
|---|
| 10 | # * Redistributions in binary form must reproduce the above copyright
|
|---|
| 11 | # notice, this list of conditions and the following disclaimer in the
|
|---|
| 12 | # documentation and/or other materials provided with the distribution.
|
|---|
| 13 | # * Neither the name of the <organization> nor the
|
|---|
| 14 | # names of its contributors may be used to endorse or promote products
|
|---|
| 15 | # derived from this software without specific prior written permission.
|
|---|
| 16 | #
|
|---|
| 17 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|---|
| 18 | # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|---|
| 19 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|---|
| 20 | # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|---|
| 21 | # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|---|
| 22 | # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|---|
| 23 | # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|---|
| 24 | # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 25 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|---|
| 26 | # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 27 |
|
|---|
| 28 | """ Module images2gif
|
|---|
| 29 |
|
|---|
| 30 | Provides functionality for reading and writing animated GIF images.
|
|---|
| 31 | Use writeGif to write a series of numpy arrays or PIL images as an
|
|---|
| 32 | animated GIF. Use readGif to read an animated gif as a series of numpy
|
|---|
| 33 | arrays.
|
|---|
| 34 |
|
|---|
| 35 | Note that since July 2004, all patents on the LZW compression patent have
|
|---|
| 36 | expired. Therefore the GIF format may now be used freely.
|
|---|
| 37 |
|
|---|
| 38 | Acknowledgements:
|
|---|
| 39 |
|
|---|
| 40 | Many thanks to Ant1 for:
|
|---|
| 41 |
|
|---|
| 42 | * noting the use of "palette=PIL.Image.ADAPTIVE", which significantly
|
|---|
| 43 | improves the results.
|
|---|
| 44 | * the modifications to save each image with its own palette, or optionally
|
|---|
| 45 | the global palette (if its the same).
|
|---|
| 46 |
|
|---|
| 47 | Many thanks to Marius van Voorden for porting the NeuQuant quantization
|
|---|
| 48 | algorithm of Anthony Dekker to Python (See the NeuQuant class for its
|
|---|
| 49 | license).
|
|---|
| 50 |
|
|---|
| 51 | Many thanks to Alex Robinson for implementing the concept of subrectangles,
|
|---|
| 52 | which (depening on image content) can give a very significant reduction in
|
|---|
| 53 | file size.
|
|---|
| 54 |
|
|---|
| 55 | This code is based on gifmaker (in the scripts folder of the source
|
|---|
| 56 | distribution of PIL)
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 | Useful links:
|
|---|
| 60 |
|
|---|
| 61 | * http://tronche.com/computer-graphics/gif/
|
|---|
| 62 | * http://en.wikipedia.org/wiki/Graphics_Interchange_Format
|
|---|
| 63 | * http://www.w3.org/Graphics/GIF/spec-gif89a.txt
|
|---|
| 64 |
|
|---|
| 65 | """
|
|---|
| 66 | # todo: This module should be part of imageio (or at least based on)
|
|---|
| 67 |
|
|---|
| 68 | import os
|
|---|
| 69 | import time
|
|---|
| 70 |
|
|---|
| 71 | try:
|
|---|
| 72 | import PIL
|
|---|
| 73 | from PIL import Image
|
|---|
| 74 | pillow = True
|
|---|
| 75 | try:
|
|---|
| 76 | from PIL import PILLOW_VERSION # test if user has Pillow or PIL
|
|---|
| 77 | except ImportError:
|
|---|
| 78 | pillow = False
|
|---|
| 79 | from PIL.GifImagePlugin import getheader, getdata
|
|---|
| 80 | except ImportError:
|
|---|
| 81 | PIL = None
|
|---|
| 82 |
|
|---|
| 83 | try:
|
|---|
| 84 | import numpy as np
|
|---|
| 85 | except ImportError:
|
|---|
| 86 | np = None
|
|---|
| 87 |
|
|---|
| 88 |
|
|---|
| 89 | def get_cKDTree():
|
|---|
| 90 | try:
|
|---|
| 91 | from scipy.spatial import cKDTree
|
|---|
| 92 | except ImportError:
|
|---|
| 93 | cKDTree = None
|
|---|
| 94 | return cKDTree
|
|---|
| 95 |
|
|---|
| 96 |
|
|---|
| 97 | # getheader gives a 87a header and a color palette (two elements in a list)
|
|---|
| 98 | # getdata()[0] gives the Image Descriptor up to (including) "LZW min code size"
|
|---|
| 99 | # getdatas()[1:] is the image data itself in chuncks of 256 bytes (well
|
|---|
| 100 | # technically the first byte says how many bytes follow, after which that
|
|---|
| 101 | # amount (max 255) follows)
|
|---|
| 102 |
|
|---|
| 103 | def checkImages(images):
|
|---|
| 104 | """ checkImages(images)
|
|---|
| 105 | Check numpy images and correct intensity range etc.
|
|---|
| 106 | The same for all movie formats.
|
|---|
| 107 |
|
|---|
| 108 | :param images:
|
|---|
| 109 | """
|
|---|
| 110 | # Init results
|
|---|
| 111 | images2 = []
|
|---|
| 112 |
|
|---|
| 113 | for im in images:
|
|---|
| 114 | if PIL and isinstance(im, PIL.Image.Image):
|
|---|
| 115 | # We assume PIL images are allright
|
|---|
| 116 | images2.append(im)
|
|---|
| 117 |
|
|---|
| 118 | elif np and isinstance(im, np.ndarray):
|
|---|
| 119 | # Check and convert dtype
|
|---|
| 120 | if im.dtype == np.uint8:
|
|---|
| 121 | images2.append(im) # Ok
|
|---|
| 122 | elif im.dtype in [np.float32, np.float64]:
|
|---|
| 123 | im = im.copy()
|
|---|
| 124 | im[im < 0] = 0
|
|---|
| 125 | im[im > 1] = 1
|
|---|
| 126 | im *= 255
|
|---|
| 127 | images2.append(im.astype(np.uint8))
|
|---|
| 128 | else:
|
|---|
| 129 | im = im.astype(np.uint8)
|
|---|
| 130 | images2.append(im)
|
|---|
| 131 | # Check size
|
|---|
| 132 | if im.ndim == 2:
|
|---|
| 133 | pass # ok
|
|---|
| 134 | elif im.ndim == 3:
|
|---|
| 135 | if im.shape[2] not in [3, 4]:
|
|---|
| 136 | raise ValueError('This array can not represent an image.')
|
|---|
| 137 | else:
|
|---|
| 138 | raise ValueError('This array can not represent an image.')
|
|---|
| 139 | else:
|
|---|
| 140 | raise ValueError('Invalid image type: ' + str(type(im)))
|
|---|
| 141 |
|
|---|
| 142 | # Done
|
|---|
| 143 | return images2
|
|---|
| 144 |
|
|---|
| 145 |
|
|---|
| 146 | def intToBin(i):
|
|---|
| 147 | """Integer to two bytes"""
|
|---|
| 148 | # divide in two parts (bytes)
|
|---|
| 149 | i1 = i % 256
|
|---|
| 150 | i2 = int(i / 256)
|
|---|
| 151 | # make string (little endian)
|
|---|
| 152 | return chr(i1) + chr(i2)
|
|---|
| 153 |
|
|---|
| 154 |
|
|---|
| 155 | class GifWriter:
|
|---|
| 156 | """Class that contains methods for helping write the animated GIF file.
|
|---|
| 157 | """
|
|---|
| 158 |
|
|---|
| 159 | def getheaderAnim(self, im):
|
|---|
| 160 | """Get animation header. To replace PILs getheader()[0]
|
|---|
| 161 |
|
|---|
| 162 | :param im:
|
|---|
| 163 | """
|
|---|
| 164 | bb = "GIF89a"
|
|---|
| 165 | bb += intToBin(im.size[0])
|
|---|
| 166 | bb += intToBin(im.size[1])
|
|---|
| 167 | bb += "\x87\x00\x00"
|
|---|
| 168 | return bb
|
|---|
| 169 |
|
|---|
| 170 | def getImageDescriptor(self, im, xy=None):
|
|---|
| 171 | """Used for the local color table properties per image.
|
|---|
| 172 | Otherwise global color table applies to all frames irrespective of
|
|---|
| 173 | whether additional colors comes in play that require a redefined
|
|---|
| 174 | palette. Still a maximum of 256 color per frame, obviously.
|
|---|
| 175 |
|
|---|
| 176 | Written by Ant1 on 2010-08-22
|
|---|
| 177 | Modified by Alex Robinson in Janurari 2011 to implement subrectangles.
|
|---|
| 178 |
|
|---|
| 179 | :param im:
|
|---|
| 180 | :param xy:
|
|---|
| 181 | """
|
|---|
| 182 |
|
|---|
| 183 | # Defaule use full image and place at upper left
|
|---|
| 184 | if xy is None:
|
|---|
| 185 | xy = (0, 0)
|
|---|
| 186 |
|
|---|
| 187 | # Image separator,
|
|---|
| 188 | bb = '\x2C'
|
|---|
| 189 |
|
|---|
| 190 | # Image position and size
|
|---|
| 191 | bb += intToBin(xy[0]) # Left position
|
|---|
| 192 | bb += intToBin(xy[1]) # Top position
|
|---|
| 193 | bb += intToBin(im.size[0]) # image width
|
|---|
| 194 | bb += intToBin(im.size[1]) # image height
|
|---|
| 195 |
|
|---|
| 196 | # packed field: local color table flag1, interlace0, sorted table0,
|
|---|
| 197 | # reserved00, lct size111=7=2^(7 + 1)=256.
|
|---|
| 198 | bb += '\x87'
|
|---|
| 199 |
|
|---|
| 200 | # LZW min size code now comes later, beginning of [image data] blocks
|
|---|
| 201 | return bb
|
|---|
| 202 |
|
|---|
| 203 | def getAppExt(self, loops=float('inf')):
|
|---|
| 204 | """Application extension. This part specifies the amount of loops.
|
|---|
| 205 | If loops is 0 or inf, it goes on infinitely.
|
|---|
| 206 |
|
|---|
| 207 | :param float loops:
|
|---|
| 208 | """
|
|---|
| 209 |
|
|---|
| 210 | if loops == 0 or loops == float('inf'):
|
|---|
| 211 | loops = 2 ** 16 - 1
|
|---|
| 212 | #bb = "" # application extension should not be used
|
|---|
| 213 | # (the extension interprets zero loops
|
|---|
| 214 | # to mean an infinite number of loops)
|
|---|
| 215 | # Mmm, does not seem to work
|
|---|
| 216 | if True:
|
|---|
| 217 | bb = "\x21\xFF\x0B" # application extension
|
|---|
| 218 | bb += "NETSCAPE2.0"
|
|---|
| 219 | bb += "\x03\x01"
|
|---|
| 220 | bb += intToBin(loops)
|
|---|
| 221 | bb += '\x00' # end
|
|---|
| 222 | return bb
|
|---|
| 223 |
|
|---|
| 224 | def getGraphicsControlExt(self, duration=0.1, dispose=2):
|
|---|
| 225 | """Graphics Control Extension. A sort of header at the start of
|
|---|
| 226 | each image. Specifies duration and transparency.
|
|---|
| 227 |
|
|---|
| 228 | Dispose:
|
|---|
| 229 |
|
|---|
| 230 | * 0 - No disposal specified.
|
|---|
| 231 | * 1 - Do not dispose. The graphic is to be left in place.
|
|---|
| 232 | * 2 - Restore to background color. The area used by the graphic
|
|---|
| 233 | must be restored to the background color.
|
|---|
| 234 | * 3 - Restore to previous. The decoder is required to restore the
|
|---|
| 235 | area overwritten by the graphic with what was there prior to
|
|---|
| 236 | rendering the graphic.
|
|---|
| 237 | * 4-7 -To be defined.
|
|---|
| 238 |
|
|---|
| 239 | :param double duration:
|
|---|
| 240 | :param dispose:
|
|---|
| 241 | """
|
|---|
| 242 |
|
|---|
| 243 | bb = '\x21\xF9\x04'
|
|---|
| 244 | bb += chr((dispose & 3) << 2) # low bit 1 == transparency,
|
|---|
| 245 | # 2nd bit 1 == user input , next 3 bits, the low two of which are used,
|
|---|
| 246 | # are dispose.
|
|---|
| 247 | bb += intToBin(int(duration * 100)) # in 100th of seconds
|
|---|
| 248 | bb += '\x00' # no transparent color
|
|---|
| 249 | bb += '\x00' # end
|
|---|
| 250 | return bb
|
|---|
| 251 |
|
|---|
| 252 | def handleSubRectangles(self, images, subRectangles):
|
|---|
| 253 | """Handle the sub-rectangle stuff. If the rectangles are given by the
|
|---|
| 254 | user, the values are checked. Otherwise the subrectangles are
|
|---|
| 255 | calculated automatically.
|
|---|
| 256 |
|
|---|
| 257 | """
|
|---|
| 258 |
|
|---|
| 259 | if isinstance(subRectangles, (tuple, list)):
|
|---|
| 260 | # xy given directly
|
|---|
| 261 |
|
|---|
| 262 | # Check xy
|
|---|
| 263 | xy = subRectangles
|
|---|
| 264 | if xy is None:
|
|---|
| 265 | xy = (0, 0)
|
|---|
| 266 | if hasattr(xy, '__len__'):
|
|---|
| 267 | if len(xy) == len(images):
|
|---|
| 268 | xy = [xxyy for xxyy in xy]
|
|---|
| 269 | else:
|
|---|
| 270 | raise ValueError("len(xy) doesn't match amount of images.")
|
|---|
| 271 | else:
|
|---|
| 272 | xy = [xy for im in images]
|
|---|
| 273 | xy[0] = (0, 0)
|
|---|
| 274 |
|
|---|
| 275 | else:
|
|---|
| 276 | # Calculate xy using some basic image processing
|
|---|
| 277 |
|
|---|
| 278 | # Check Numpy
|
|---|
| 279 | if np is None:
|
|---|
| 280 | raise RuntimeError("Need Numpy to use auto-subRectangles.")
|
|---|
| 281 |
|
|---|
| 282 | # First make numpy arrays if required
|
|---|
| 283 | for i in range(len(images)):
|
|---|
| 284 | im = images[i]
|
|---|
| 285 | if isinstance(im, Image.Image):
|
|---|
| 286 | tmp = im.convert() # Make without palette
|
|---|
| 287 | a = np.asarray(tmp)
|
|---|
| 288 | if len(a.shape) == 0:
|
|---|
| 289 | raise MemoryError("Too little memory to convert PIL image to array")
|
|---|
| 290 | images[i] = a
|
|---|
| 291 |
|
|---|
| 292 | # Determine the sub rectangles
|
|---|
| 293 | images, xy = self.getSubRectangles(images)
|
|---|
| 294 |
|
|---|
| 295 | # Done
|
|---|
| 296 | return images, xy
|
|---|
| 297 |
|
|---|
| 298 | def getSubRectangles(self, ims):
|
|---|
| 299 | """ getSubRectangles(ims)
|
|---|
| 300 |
|
|---|
| 301 | Calculate the minimal rectangles that need updating each frame.
|
|---|
| 302 | Returns a two-element tuple containing the cropped images and a
|
|---|
| 303 | list of x-y positions.
|
|---|
| 304 |
|
|---|
| 305 | Calculating the subrectangles takes extra time, obviously. However,
|
|---|
| 306 | if the image sizes were reduced, the actual writing of the GIF
|
|---|
| 307 | goes faster. In some cases applying this method produces a GIF faster.
|
|---|
| 308 |
|
|---|
| 309 | """
|
|---|
| 310 |
|
|---|
| 311 | # Check image count
|
|---|
| 312 | if len(ims) < 2:
|
|---|
| 313 | return ims, [(0, 0) for i in ims]
|
|---|
| 314 |
|
|---|
| 315 | # We need numpy
|
|---|
| 316 | if np is None:
|
|---|
| 317 | raise RuntimeError("Need Numpy to calculate sub-rectangles. ")
|
|---|
| 318 |
|
|---|
| 319 | # Prepare
|
|---|
| 320 | ims2 = [ims[0]]
|
|---|
| 321 | xy = [(0, 0)]
|
|---|
| 322 | t0 = time.time()
|
|---|
| 323 |
|
|---|
| 324 | # Iterate over images
|
|---|
| 325 | prev = ims[0]
|
|---|
| 326 | for im in ims[1:]:
|
|---|
| 327 |
|
|---|
| 328 | # Get difference, sum over colors
|
|---|
| 329 | diff = np.abs(im-prev)
|
|---|
| 330 | if diff.ndim == 3:
|
|---|
| 331 | diff = diff.sum(2)
|
|---|
| 332 | # Get begin and end for both dimensions
|
|---|
| 333 | X = np.argwhere(diff.sum(0))
|
|---|
| 334 | Y = np.argwhere(diff.sum(1))
|
|---|
| 335 | # Get rect coordinates
|
|---|
| 336 | if X.size and Y.size:
|
|---|
| 337 | x0, x1 = int(X[0]), int(X[-1] + 1)
|
|---|
| 338 | y0, y1 = int(Y[0]), int(Y[-1] + 1)
|
|---|
| 339 | else: # No change ... make it minimal
|
|---|
| 340 | x0, x1 = 0, 2
|
|---|
| 341 | y0, y1 = 0, 2
|
|---|
| 342 |
|
|---|
| 343 | # Cut out and store
|
|---|
| 344 | im2 = im[y0:y1, x0:x1]
|
|---|
| 345 | prev = im
|
|---|
| 346 | ims2.append(im2)
|
|---|
| 347 | xy.append((x0, y0))
|
|---|
| 348 |
|
|---|
| 349 | # Done
|
|---|
| 350 | # print('%1.2f seconds to determine subrectangles of %i images' %
|
|---|
| 351 | # (time.time()-t0, len(ims2)))
|
|---|
| 352 | return ims2, xy
|
|---|
| 353 |
|
|---|
| 354 | def convertImagesToPIL(self, images, dither, nq=0):
|
|---|
| 355 | """ convertImagesToPIL(images, nq=0)
|
|---|
| 356 |
|
|---|
| 357 | Convert images to Paletted PIL images, which can then be
|
|---|
| 358 | written to a single animaged GIF.
|
|---|
| 359 |
|
|---|
| 360 | """
|
|---|
| 361 |
|
|---|
| 362 | # Convert to PIL images
|
|---|
| 363 | images2 = []
|
|---|
| 364 | for im in images:
|
|---|
| 365 | if isinstance(im, Image.Image):
|
|---|
| 366 | images2.append(im)
|
|---|
| 367 | elif np and isinstance(im, np.ndarray):
|
|---|
| 368 | if im.ndim == 3 and im.shape[2] == 3:
|
|---|
| 369 | im = Image.fromarray(im, 'RGB')
|
|---|
| 370 | elif im.ndim == 3 and im.shape[2] == 4:
|
|---|
| 371 | im = Image.fromarray(im[:, :, :3], 'RGB')
|
|---|
| 372 | elif im.ndim == 2:
|
|---|
| 373 | im = Image.fromarray(im, 'L')
|
|---|
| 374 | images2.append(im)
|
|---|
| 375 |
|
|---|
| 376 | # Convert to paletted PIL images
|
|---|
| 377 | images, images2 = images2, []
|
|---|
| 378 | if nq >= 1:
|
|---|
| 379 | # NeuQuant algorithm
|
|---|
| 380 | for im in images:
|
|---|
| 381 | im = im.convert("RGBA") # NQ assumes RGBA
|
|---|
| 382 | nqInstance = NeuQuant(im, int(nq)) # Learn colors from image
|
|---|
| 383 | if dither:
|
|---|
| 384 | im = im.convert("RGB").quantize(palette=nqInstance.paletteImage())
|
|---|
| 385 | else:
|
|---|
| 386 | # Use to quantize the image itself
|
|---|
| 387 | im = nqInstance.quantize(im)
|
|---|
| 388 | images2.append(im)
|
|---|
| 389 | else:
|
|---|
| 390 | # Adaptive PIL algorithm
|
|---|
| 391 | AD = Image.ADAPTIVE
|
|---|
| 392 | for im in images:
|
|---|
| 393 | im = im.convert('P', palette=AD, dither=dither)
|
|---|
| 394 | images2.append(im)
|
|---|
| 395 |
|
|---|
| 396 | # Done
|
|---|
| 397 | return images2
|
|---|
| 398 |
|
|---|
| 399 | def writeGifToFile(self, fp, images, durations, loops, xys, disposes):
|
|---|
| 400 | """ writeGifToFile(fp, images, durations, loops, xys, disposes)
|
|---|
| 401 |
|
|---|
| 402 | Given a set of images writes the bytes to the specified stream.
|
|---|
| 403 | Requires different handling of palette for PIL and Pillow:
|
|---|
| 404 | based on https://github.com/rec/echomesh/blob/master/
|
|---|
| 405 | code/python/external/images2gif.py
|
|---|
| 406 |
|
|---|
| 407 | """
|
|---|
| 408 |
|
|---|
| 409 | # Obtain palette for all images and count each occurrence
|
|---|
| 410 | palettes, occur = [], []
|
|---|
| 411 | for im in images:
|
|---|
| 412 | if not pillow:
|
|---|
| 413 | palette = getheader(im)[1]
|
|---|
| 414 | else:
|
|---|
| 415 | palette = getheader(im)[0][-1]
|
|---|
| 416 | if not palette:
|
|---|
| 417 | palette = im.palette.tobytes()
|
|---|
| 418 | palettes.append(palette)
|
|---|
| 419 | for palette in palettes:
|
|---|
| 420 | occur.append(palettes.count(palette))
|
|---|
| 421 |
|
|---|
| 422 | # Select most-used palette as the global one (or first in case no max)
|
|---|
| 423 | globalPalette = palettes[occur.index(max(occur))]
|
|---|
| 424 |
|
|---|
| 425 | # Init
|
|---|
| 426 | frames = 0
|
|---|
| 427 | firstFrame = True
|
|---|
| 428 |
|
|---|
| 429 | for im, palette in zip(images, palettes):
|
|---|
| 430 |
|
|---|
| 431 | if firstFrame:
|
|---|
| 432 | # Write header
|
|---|
| 433 |
|
|---|
| 434 | # Gather info
|
|---|
| 435 | header = self.getheaderAnim(im)
|
|---|
| 436 | appext = self.getAppExt(loops)
|
|---|
| 437 |
|
|---|
| 438 | # Write
|
|---|
| 439 | fp.write(header)
|
|---|
| 440 | fp.write(globalPalette)
|
|---|
| 441 | fp.write(appext)
|
|---|
| 442 |
|
|---|
| 443 | # Next frame is not the first
|
|---|
| 444 | firstFrame = False
|
|---|
| 445 |
|
|---|
| 446 | if True:
|
|---|
| 447 | # Write palette and image data
|
|---|
| 448 |
|
|---|
| 449 | # Gather info
|
|---|
| 450 | data = getdata(im)
|
|---|
| 451 | imdes, data = data[0], data[1:]
|
|---|
| 452 | graphext = self.getGraphicsControlExt(durations[frames],
|
|---|
| 453 | disposes[frames])
|
|---|
| 454 | # Make image descriptor suitable for using 256 local color palette
|
|---|
| 455 | lid = self.getImageDescriptor(im, xys[frames])
|
|---|
| 456 |
|
|---|
| 457 | # Write local header
|
|---|
| 458 | if (palette != globalPalette) or (disposes[frames] != 2):
|
|---|
| 459 | # Use local color palette
|
|---|
| 460 | fp.write(graphext)
|
|---|
| 461 | fp.write(lid) # write suitable image descriptor
|
|---|
| 462 | fp.write(palette) # write local color table
|
|---|
| 463 | fp.write('\x08') # LZW minimum size code
|
|---|
| 464 | else:
|
|---|
| 465 | # Use global color palette
|
|---|
| 466 | fp.write(graphext)
|
|---|
| 467 | fp.write(imdes) # write suitable image descriptor
|
|---|
| 468 |
|
|---|
| 469 | # Write image data
|
|---|
| 470 | for d in data:
|
|---|
| 471 | fp.write(d)
|
|---|
| 472 |
|
|---|
| 473 | # Prepare for next round
|
|---|
| 474 | frames = frames + 1
|
|---|
| 475 |
|
|---|
| 476 | fp.write(";") # end gif
|
|---|
| 477 | return frames
|
|---|
| 478 |
|
|---|
| 479 |
|
|---|
| 480 | def writeGif(filename, images, duration=0.1, repeat=True, **kwargs):
|
|---|
| 481 | """Write an animated gif from the specified images.
|
|---|
| 482 | Depending on which PIL library is used, either writeGifVisvis or writeGifPillow
|
|---|
| 483 | is used here.
|
|---|
| 484 |
|
|---|
| 485 | :param str filename: the name of the file to write the image to.
|
|---|
| 486 | :param list images: should be a list consisting of PIL images or numpy
|
|---|
| 487 | arrays. The latter should be between 0 and 255 for
|
|---|
| 488 | integer types, and between 0 and 1 for float types.
|
|---|
| 489 | :param duration: scalar or list of scalars The duration for all frames, or
|
|---|
| 490 | (if a list) for each frame.
|
|---|
| 491 | :param repeat: bool or integer The amount of loops. If True, loops infinitetel
|
|---|
| 492 | :param kwargs: additional parameters for writeGifVisvis
|
|---|
| 493 |
|
|---|
| 494 | """
|
|---|
| 495 | if pillow:
|
|---|
| 496 | # Pillow >= 3.4.0 has animated GIF writing
|
|---|
| 497 | version = [int(i) for i in PILLOW_VERSION.split('.')]
|
|---|
| 498 | if version[0] > 3 or (version[0] == 3 and version[1] >= 4):
|
|---|
| 499 | writeGifPillow(filename, images, duration, repeat)
|
|---|
| 500 | return
|
|---|
| 501 | # otherwise use the old one
|
|---|
| 502 | writeGifVisvis(filename, images, duration, repeat, **kwargs)
|
|---|
| 503 |
|
|---|
| 504 |
|
|---|
| 505 | def writeGifPillow(filename, images, duration=0.1, repeat=True):
|
|---|
| 506 | """Write an animated gif from the specified images.
|
|---|
| 507 | Uses native Pillow implementation, which is available since Pillow 3.4.0.
|
|---|
| 508 |
|
|---|
| 509 | :param str filename: the name of the file to write the image to.
|
|---|
| 510 | :param list images: should be a list consisting of PIL images or numpy
|
|---|
| 511 | arrays. The latter should be between 0 and 255 for
|
|---|
| 512 | integer types, and between 0 and 1 for float types.
|
|---|
| 513 | :param duration: scalar or list of scalars The duration for all frames, or
|
|---|
| 514 | (if a list) for each frame.
|
|---|
| 515 | :param repeat: bool or integer The amount of loops. If True, loops infinitetel
|
|---|
| 516 |
|
|---|
| 517 | """
|
|---|
| 518 | loop = 0 if repeat else 1
|
|---|
| 519 | quantized = []
|
|---|
| 520 | for im in images:
|
|---|
| 521 | quantized.append(im.quantize())
|
|---|
| 522 | quantized[0].save(filename, save_all=True, append_images=quantized[1:], loop=loop, duration=duration * 1000)
|
|---|
| 523 |
|
|---|
| 524 |
|
|---|
| 525 | def writeGifVisvis(filename, images, duration=0.1, repeat=True, dither=False,
|
|---|
| 526 | nq=0, subRectangles=True, dispose=None):
|
|---|
| 527 | """Write an animated gif from the specified images.
|
|---|
| 528 | Uses VisVis implementation. Unfortunately it produces corrupted GIF
|
|---|
| 529 | with Pillow >= 3.4.0.
|
|---|
| 530 |
|
|---|
| 531 | :param str filename: the name of the file to write the image to.
|
|---|
| 532 | :param list images: should be a list consisting of PIL images or numpy
|
|---|
| 533 | arrays. The latter should be between 0 and 255 for
|
|---|
| 534 | integer types, and between 0 and 1 for float types.
|
|---|
| 535 | :param duration: scalar or list of scalars The duration for all frames, or
|
|---|
| 536 | (if a list) for each frame.
|
|---|
| 537 | :param repeat: bool or integer The amount of loops. If True, loops infinitetely.
|
|---|
| 538 | :param bool dither: whether to apply dithering
|
|---|
| 539 | :param int nq: If nonzero, applies the NeuQuant quantization algorithm to
|
|---|
| 540 | create the color palette. This algorithm is superior, but
|
|---|
| 541 | slower than the standard PIL algorithm. The value of nq is
|
|---|
| 542 | the quality parameter. 1 represents the best quality. 10 is
|
|---|
| 543 | in general a good tradeoff between quality and speed. When
|
|---|
| 544 | using this option, better results are usually obtained when
|
|---|
| 545 | subRectangles is False.
|
|---|
| 546 | :param subRectangles: False, True, or a list of 2-element tuples
|
|---|
| 547 | Whether to use sub-rectangles. If True, the minimal
|
|---|
| 548 | rectangle that is required to update each frame is
|
|---|
| 549 | automatically detected. This can give significant
|
|---|
| 550 | reductions in file size, particularly if only a part
|
|---|
| 551 | of the image changes. One can also give a list of x-y
|
|---|
| 552 | coordinates if you want to do the cropping yourself.
|
|---|
| 553 | The default is True.
|
|---|
| 554 | :param int dispose: how to dispose each frame. 1 means that each frame is
|
|---|
| 555 | to be left in place. 2 means the background color
|
|---|
| 556 | should be restored after each frame. 3 means the
|
|---|
| 557 | decoder should restore the previous frame. If
|
|---|
| 558 | subRectangles==False, the default is 2, otherwise it is 1.
|
|---|
| 559 |
|
|---|
| 560 | """
|
|---|
| 561 |
|
|---|
| 562 | # Check PIL
|
|---|
| 563 | if PIL is None:
|
|---|
| 564 | raise RuntimeError("Need PIL to write animated gif files.")
|
|---|
| 565 |
|
|---|
| 566 | # Check images
|
|---|
| 567 | images = checkImages(images)
|
|---|
| 568 |
|
|---|
| 569 | # Instantiate writer object
|
|---|
| 570 | gifWriter = GifWriter()
|
|---|
| 571 |
|
|---|
| 572 | # Check loops
|
|---|
| 573 | if repeat is False:
|
|---|
| 574 | loops = 1
|
|---|
| 575 | elif repeat is True:
|
|---|
| 576 | loops = 0 # zero means infinite
|
|---|
| 577 | else:
|
|---|
| 578 | loops = int(repeat)
|
|---|
| 579 |
|
|---|
| 580 | # Check duration
|
|---|
| 581 | if hasattr(duration, '__len__'):
|
|---|
| 582 | if len(duration) == len(images):
|
|---|
| 583 | duration = [d for d in duration]
|
|---|
| 584 | else:
|
|---|
| 585 | raise ValueError("len(duration) doesn't match amount of images.")
|
|---|
| 586 | else:
|
|---|
| 587 | duration = [duration for im in images]
|
|---|
| 588 |
|
|---|
| 589 | # Check subrectangles
|
|---|
| 590 | if subRectangles:
|
|---|
| 591 | images, xy = gifWriter.handleSubRectangles(images, subRectangles)
|
|---|
| 592 | defaultDispose = 1 # Leave image in place
|
|---|
| 593 | else:
|
|---|
| 594 | # Normal mode
|
|---|
| 595 | xy = [(0, 0) for im in images]
|
|---|
| 596 | defaultDispose = 2 # Restore to background color.
|
|---|
| 597 |
|
|---|
| 598 | # Check dispose
|
|---|
| 599 | if dispose is None:
|
|---|
| 600 | dispose = defaultDispose
|
|---|
| 601 | if hasattr(dispose, '__len__'):
|
|---|
| 602 | if len(dispose) != len(images):
|
|---|
| 603 | raise ValueError("len(xy) doesn't match amount of images.")
|
|---|
| 604 | else:
|
|---|
| 605 | dispose = [dispose for im in images]
|
|---|
| 606 |
|
|---|
| 607 | # Make images in a format that we can write easy
|
|---|
| 608 | images = gifWriter.convertImagesToPIL(images, dither, nq)
|
|---|
| 609 |
|
|---|
| 610 | # Write
|
|---|
| 611 | fp = open(filename, 'wb')
|
|---|
| 612 | try:
|
|---|
| 613 | gifWriter.writeGifToFile(fp, images, duration, loops, xy, dispose)
|
|---|
| 614 | finally:
|
|---|
| 615 | fp.close()
|
|---|
| 616 |
|
|---|
| 617 |
|
|---|
| 618 | def readGif(filename, asNumpy=True):
|
|---|
| 619 | """Read images from an animated GIF file. Returns a list of numpy
|
|---|
| 620 | arrays, or, if asNumpy is false, a list if PIL images.
|
|---|
| 621 |
|
|---|
| 622 | """
|
|---|
| 623 |
|
|---|
| 624 | # Check PIL
|
|---|
| 625 | if PIL is None:
|
|---|
| 626 | raise RuntimeError("Need PIL to read animated gif files.")
|
|---|
| 627 |
|
|---|
| 628 | # Check Numpy
|
|---|
| 629 | if np is None:
|
|---|
| 630 | raise RuntimeError("Need Numpy to read animated gif files.")
|
|---|
| 631 |
|
|---|
| 632 | # Check whether it exists
|
|---|
| 633 | if not os.path.isfile(filename):
|
|---|
| 634 | raise IOError('File not found: ' + str(filename))
|
|---|
| 635 |
|
|---|
| 636 | # Load file using PIL
|
|---|
| 637 | pilIm = PIL.Image.open(filename)
|
|---|
| 638 | pilIm.seek(0)
|
|---|
| 639 |
|
|---|
| 640 | # Read all images inside
|
|---|
| 641 | images = []
|
|---|
| 642 | try:
|
|---|
| 643 | while True:
|
|---|
| 644 | # Get image as numpy array
|
|---|
| 645 | tmp = pilIm.convert() # Make without palette
|
|---|
| 646 | a = np.asarray(tmp)
|
|---|
| 647 | if len(a.shape) == 0:
|
|---|
| 648 | raise MemoryError("Too little memory to convert PIL image to array")
|
|---|
| 649 | # Store, and next
|
|---|
| 650 | images.append(a)
|
|---|
| 651 | pilIm.seek(pilIm.tell() + 1)
|
|---|
| 652 | except EOFError:
|
|---|
| 653 | pass
|
|---|
| 654 |
|
|---|
| 655 | # Convert to normal PIL images if needed
|
|---|
| 656 | if not asNumpy:
|
|---|
| 657 | images2 = images
|
|---|
| 658 | images = []
|
|---|
| 659 | for im in images2:
|
|---|
| 660 | images.append(PIL.Image.fromarray(im))
|
|---|
| 661 |
|
|---|
| 662 | # Done
|
|---|
| 663 | return images
|
|---|
| 664 |
|
|---|
| 665 |
|
|---|
| 666 | class NeuQuant:
|
|---|
| 667 | """ NeuQuant(image, samplefac=10, colors=256)
|
|---|
| 668 |
|
|---|
| 669 | samplefac should be an integer number of 1 or higher, 1
|
|---|
| 670 | being the highest quality, but the slowest performance.
|
|---|
| 671 | With avalue of 10, one tenth of all pixels are used during
|
|---|
| 672 | training. This value seems a nice tradeof between speed
|
|---|
| 673 | and quality.
|
|---|
| 674 |
|
|---|
| 675 | colors is the amount of colors to reduce the image to. This
|
|---|
| 676 | should best be a power of two.
|
|---|
| 677 |
|
|---|
| 678 | See also:
|
|---|
| 679 | http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
|
|---|
| 680 |
|
|---|
| 681 | **License of the NeuQuant Neural-Net Quantization Algorithm**
|
|---|
| 682 |
|
|---|
| 683 | Copyright (c) 1994 Anthony Dekker
|
|---|
| 684 | Ported to python by Marius van Voorden in 2010
|
|---|
| 685 |
|
|---|
| 686 | NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
|
|---|
| 687 | See "Kohonen neural networks for optimal colour quantization"
|
|---|
| 688 | in "network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
|
|---|
| 689 | for a discussion of the algorithm.
|
|---|
| 690 | See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
|
|---|
| 691 |
|
|---|
| 692 | Any party obtaining a copy of these files from the author, directly or
|
|---|
| 693 | indirectly, is granted, free of charge, a full and unrestricted
|
|---|
| 694 | irrevocable, world-wide, paid up, royalty-free, nonexclusive right and
|
|---|
| 695 | license to deal in this software and documentation files (the "Software"),
|
|---|
| 696 | including without limitation the rights to use, copy, modify, merge,
|
|---|
| 697 | publish, distribute, sublicense, and/or sell copies of the Software, and
|
|---|
| 698 | to permit persons who receive copies from any such party to do so, with
|
|---|
| 699 | the only requirement being that this copyright notice remain intact.
|
|---|
| 700 |
|
|---|
| 701 | """
|
|---|
| 702 |
|
|---|
| 703 | NCYCLES = None # Number of learning cycles
|
|---|
| 704 | NETSIZE = None # Number of colours used
|
|---|
| 705 | SPECIALS = None # Number of reserved colours used
|
|---|
| 706 | BGCOLOR = None # Reserved background colour
|
|---|
| 707 | CUTNETSIZE = None
|
|---|
| 708 | MAXNETPOS = None
|
|---|
| 709 |
|
|---|
| 710 | INITRAD = None # For 256 colours, radius starts at 32
|
|---|
| 711 | RADIUSBIASSHIFT = None
|
|---|
| 712 | RADIUSBIAS = None
|
|---|
| 713 | INITBIASRADIUS = None
|
|---|
| 714 | RADIUSDEC = None # Factor of 1/30 each cycle
|
|---|
| 715 |
|
|---|
| 716 | ALPHABIASSHIFT = None
|
|---|
| 717 | INITALPHA = None # biased by 10 bits
|
|---|
| 718 |
|
|---|
| 719 | GAMMA = None
|
|---|
| 720 | BETA = None
|
|---|
| 721 | BETAGAMMA = None
|
|---|
| 722 |
|
|---|
| 723 | network = None # The network itself
|
|---|
| 724 | colormap = None # The network itself
|
|---|
| 725 |
|
|---|
| 726 | netindex = None # For network lookup - really 256
|
|---|
| 727 |
|
|---|
| 728 | bias = None # Bias and freq arrays for learning
|
|---|
| 729 | freq = None
|
|---|
| 730 |
|
|---|
| 731 | pimage = None
|
|---|
| 732 |
|
|---|
| 733 | # Four primes near 500 - assume no image has a length so large
|
|---|
| 734 | # that it is divisible by all four primes
|
|---|
| 735 | PRIME1 = 499
|
|---|
| 736 | PRIME2 = 491
|
|---|
| 737 | PRIME3 = 487
|
|---|
| 738 | PRIME4 = 503
|
|---|
| 739 | MAXPRIME = PRIME4
|
|---|
| 740 |
|
|---|
| 741 | pixels = None
|
|---|
| 742 | samplefac = None
|
|---|
| 743 |
|
|---|
| 744 | a_s = None
|
|---|
| 745 |
|
|---|
| 746 | def setconstants(self, samplefac, colors):
|
|---|
| 747 | self.NCYCLES = 100 # Number of learning cycles
|
|---|
| 748 | self.NETSIZE = colors # Number of colours used
|
|---|
| 749 | self.SPECIALS = 3 # Number of reserved colours used
|
|---|
| 750 | self.BGCOLOR = self.SPECIALS-1 # Reserved background colour
|
|---|
| 751 | self.CUTNETSIZE = self.NETSIZE - self.SPECIALS
|
|---|
| 752 | self.MAXNETPOS = self.NETSIZE - 1
|
|---|
| 753 |
|
|---|
| 754 | self.INITRAD = self.NETSIZE/8 # For 256 colours, radius starts at 32
|
|---|
| 755 | self.RADIUSBIASSHIFT = 6
|
|---|
| 756 | self.RADIUSBIAS = 1 << self.RADIUSBIASSHIFT
|
|---|
| 757 | self.INITBIASRADIUS = self.INITRAD * self.RADIUSBIAS
|
|---|
| 758 | self.RADIUSDEC = 30 # Factor of 1/30 each cycle
|
|---|
| 759 |
|
|---|
| 760 | self.ALPHABIASSHIFT = 10 # Alpha starts at 1
|
|---|
| 761 | self.INITALPHA = 1 << self.ALPHABIASSHIFT # biased by 10 bits
|
|---|
| 762 |
|
|---|
| 763 | self.GAMMA = 1024.0
|
|---|
| 764 | self.BETA = 1.0/1024.0
|
|---|
| 765 | self.BETAGAMMA = self.BETA * self.GAMMA
|
|---|
| 766 |
|
|---|
| 767 | self.network = np.empty((self.NETSIZE, 3), dtype='float64') # The network itself
|
|---|
| 768 | self.colormap = np.empty((self.NETSIZE, 4), dtype='int32') # The network itself
|
|---|
| 769 |
|
|---|
| 770 | self.netindex = np.empty(256, dtype='int32') # For network lookup - really 256
|
|---|
| 771 |
|
|---|
| 772 | self.bias = np.empty(self.NETSIZE, dtype='float64') # Bias and freq arrays for learning
|
|---|
| 773 | self.freq = np.empty(self.NETSIZE, dtype='float64')
|
|---|
| 774 |
|
|---|
| 775 | self.pixels = None
|
|---|
| 776 | self.samplefac = samplefac
|
|---|
| 777 |
|
|---|
| 778 | self.a_s = {}
|
|---|
| 779 |
|
|---|
| 780 | def __init__(self, image, samplefac=10, colors=256):
|
|---|
| 781 |
|
|---|
| 782 | # Check Numpy
|
|---|
| 783 | if np is None:
|
|---|
| 784 | raise RuntimeError("Need Numpy for the NeuQuant algorithm.")
|
|---|
| 785 |
|
|---|
| 786 | # Check image
|
|---|
| 787 | if image.size[0] * image.size[1] < NeuQuant.MAXPRIME:
|
|---|
| 788 | raise IOError("Image is too small")
|
|---|
| 789 | if image.mode != "RGBA":
|
|---|
| 790 | raise IOError("Image mode should be RGBA.")
|
|---|
| 791 |
|
|---|
| 792 | # Initialize
|
|---|
| 793 | self.setconstants(samplefac, colors)
|
|---|
| 794 | self.pixels = np.fromstring(getattr(image, "tobytes", getattr(image, "tostring"))(), np.uint32)
|
|---|
| 795 | self.setUpArrays()
|
|---|
| 796 |
|
|---|
| 797 | self.learn()
|
|---|
| 798 | self.fix()
|
|---|
| 799 | self.inxbuild()
|
|---|
| 800 |
|
|---|
| 801 | def writeColourMap(self, rgb, outstream):
|
|---|
| 802 | for i in range(self.NETSIZE):
|
|---|
| 803 | bb = self.colormap[i, 0]
|
|---|
| 804 | gg = self.colormap[i, 1]
|
|---|
| 805 | rr = self.colormap[i, 2]
|
|---|
| 806 | outstream.write(rr if rgb else bb)
|
|---|
| 807 | outstream.write(gg)
|
|---|
| 808 | outstream.write(bb if rgb else rr)
|
|---|
| 809 | return self.NETSIZE
|
|---|
| 810 |
|
|---|
| 811 | def setUpArrays(self):
|
|---|
| 812 | self.network[0, 0] = 0.0 # Black
|
|---|
| 813 | self.network[0, 1] = 0.0
|
|---|
| 814 | self.network[0, 2] = 0.0
|
|---|
| 815 |
|
|---|
| 816 | self.network[1, 0] = 255.0 # White
|
|---|
| 817 | self.network[1, 1] = 255.0
|
|---|
| 818 | self.network[1, 2] = 255.0
|
|---|
| 819 |
|
|---|
| 820 | # RESERVED self.BGCOLOR # Background
|
|---|
| 821 |
|
|---|
| 822 | for i in range(self.SPECIALS):
|
|---|
| 823 | self.freq[i] = 1.0 / self.NETSIZE
|
|---|
| 824 | self.bias[i] = 0.0
|
|---|
| 825 |
|
|---|
| 826 | for i in range(self.SPECIALS, self.NETSIZE):
|
|---|
| 827 | p = self.network[i]
|
|---|
| 828 | p[:] = (255.0 * (i-self.SPECIALS)) / self.CUTNETSIZE
|
|---|
| 829 |
|
|---|
| 830 | self.freq[i] = 1.0 / self.NETSIZE
|
|---|
| 831 | self.bias[i] = 0.0
|
|---|
| 832 |
|
|---|
| 833 | # Omitted: setPixels
|
|---|
| 834 |
|
|---|
| 835 | def altersingle(self, alpha, i, b, g, r):
|
|---|
| 836 | """Move neuron i towards biased (b, g, r) by factor alpha"""
|
|---|
| 837 | n = self.network[i] # Alter hit neuron
|
|---|
| 838 | n[0] -= (alpha * (n[0] - b))
|
|---|
| 839 | n[1] -= (alpha * (n[1] - g))
|
|---|
| 840 | n[2] -= (alpha * (n[2] - r))
|
|---|
| 841 |
|
|---|
| 842 | def geta(self, alpha, rad):
|
|---|
| 843 | try:
|
|---|
| 844 | return self.a_s[(alpha, rad)]
|
|---|
| 845 | except KeyError:
|
|---|
| 846 | length = rad * 2-1
|
|---|
| 847 | mid = length/2
|
|---|
| 848 | q = np.array(list(range(mid-1, -1, -1)) + list(range(-1, mid)))
|
|---|
| 849 | a = alpha * (rad * rad - q * q)/(rad * rad)
|
|---|
| 850 | a[mid] = 0
|
|---|
| 851 | self.a_s[(alpha, rad)] = a
|
|---|
| 852 | return a
|
|---|
| 853 |
|
|---|
| 854 | def alterneigh(self, alpha, rad, i, b, g, r):
|
|---|
| 855 | if i-rad >= self.SPECIALS-1:
|
|---|
| 856 | lo = i-rad
|
|---|
| 857 | start = 0
|
|---|
| 858 | else:
|
|---|
| 859 | lo = self.SPECIALS-1
|
|---|
| 860 | start = (self.SPECIALS-1 - (i-rad))
|
|---|
| 861 |
|
|---|
| 862 | if i + rad <= self.NETSIZE:
|
|---|
| 863 | hi = i + rad
|
|---|
| 864 | end = rad * 2-1
|
|---|
| 865 | else:
|
|---|
| 866 | hi = self.NETSIZE
|
|---|
| 867 | end = (self.NETSIZE - (i + rad))
|
|---|
| 868 |
|
|---|
| 869 | a = self.geta(alpha, rad)[start:end]
|
|---|
| 870 |
|
|---|
| 871 | p = self.network[lo + 1:hi]
|
|---|
| 872 | p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a)
|
|---|
| 873 |
|
|---|
| 874 | #def contest(self, b, g, r):
|
|---|
| 875 | # """ Search for biased BGR values
|
|---|
| 876 | # Finds closest neuron (min dist) and updates self.freq
|
|---|
| 877 | # finds best neuron (min dist-self.bias) and returns position
|
|---|
| 878 | # for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative
|
|---|
| 879 | # self.bias[i] = self.GAMMA * ((1/self.NETSIZE)-self.freq[i])"""
|
|---|
| 880 | #
|
|---|
| 881 | # i, j = self.SPECIALS, self.NETSIZE
|
|---|
| 882 | # dists = abs(self.network[i:j] - np.array([b, g, r])).sum(1)
|
|---|
| 883 | # bestpos = i + np.argmin(dists)
|
|---|
| 884 | # biasdists = dists - self.bias[i:j]
|
|---|
| 885 | # bestbiaspos = i + np.argmin(biasdists)
|
|---|
| 886 | # self.freq[i:j] -= self.BETA * self.freq[i:j]
|
|---|
| 887 | # self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
|
|---|
| 888 | # self.freq[bestpos] += self.BETA
|
|---|
| 889 | # self.bias[bestpos] -= self.BETAGAMMA
|
|---|
| 890 | # return bestbiaspos
|
|---|
| 891 | def contest(self, b, g, r):
|
|---|
| 892 | """Search for biased BGR values
|
|---|
| 893 | Finds closest neuron (min dist) and updates self.freq
|
|---|
| 894 | finds best neuron (min dist-self.bias) and returns position
|
|---|
| 895 | for frequently chosen neurons, self.freq[i] is high and self.bias[i]
|
|---|
| 896 | is negative self.bias[i] = self.GAMMA * ((1/self.NETSIZE)-self.freq[i])
|
|---|
| 897 | """
|
|---|
| 898 | i, j = self.SPECIALS, self.NETSIZE
|
|---|
| 899 | dists = abs(self.network[i:j] - np.array([b, g, r])).sum(1)
|
|---|
| 900 | bestpos = i + np.argmin(dists)
|
|---|
| 901 | biasdists = dists - self.bias[i:j]
|
|---|
| 902 | bestbiaspos = i + np.argmin(biasdists)
|
|---|
| 903 | self.freq[i:j] *= (1-self.BETA)
|
|---|
| 904 | self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
|
|---|
| 905 | self.freq[bestpos] += self.BETA
|
|---|
| 906 | self.bias[bestpos] -= self.BETAGAMMA
|
|---|
| 907 | return bestbiaspos
|
|---|
| 908 |
|
|---|
| 909 | def specialFind(self, b, g, r):
|
|---|
| 910 | for i in range(self.SPECIALS):
|
|---|
| 911 | n = self.network[i]
|
|---|
| 912 | if n[0] == b and n[1] == g and n[2] == r:
|
|---|
| 913 | return i
|
|---|
| 914 | return -1
|
|---|
| 915 |
|
|---|
| 916 | def learn(self):
|
|---|
| 917 | biasRadius = self.INITBIASRADIUS
|
|---|
| 918 | alphadec = 30 + ((self.samplefac-1)/3)
|
|---|
| 919 | lengthcount = self.pixels.size
|
|---|
| 920 | samplepixels = lengthcount / self.samplefac
|
|---|
| 921 | delta = samplepixels / self.NCYCLES
|
|---|
| 922 | alpha = self.INITALPHA
|
|---|
| 923 |
|
|---|
| 924 | i = 0
|
|---|
| 925 | rad = biasRadius >> self.RADIUSBIASSHIFT
|
|---|
| 926 | if rad <= 1:
|
|---|
| 927 | rad = 0
|
|---|
| 928 |
|
|---|
| 929 | print("Beginning 1D learning: samplepixels = %1.2f rad = %i" %
|
|---|
| 930 | (samplepixels, rad))
|
|---|
| 931 | step = 0
|
|---|
| 932 | pos = 0
|
|---|
| 933 | if lengthcount % NeuQuant.PRIME1 != 0:
|
|---|
| 934 | step = NeuQuant.PRIME1
|
|---|
| 935 | elif lengthcount % NeuQuant.PRIME2 != 0:
|
|---|
| 936 | step = NeuQuant.PRIME2
|
|---|
| 937 | elif lengthcount % NeuQuant.PRIME3 != 0:
|
|---|
| 938 | step = NeuQuant.PRIME3
|
|---|
| 939 | else:
|
|---|
| 940 | step = NeuQuant.PRIME4
|
|---|
| 941 |
|
|---|
| 942 | i = 0
|
|---|
| 943 | printed_string = ''
|
|---|
| 944 | while i < samplepixels:
|
|---|
| 945 | if i % 100 == 99:
|
|---|
| 946 | tmp = '\b' * len(printed_string)
|
|---|
| 947 | printed_string = str((i + 1) * 100/samplepixels) + "%\n"
|
|---|
| 948 | print(tmp + printed_string)
|
|---|
| 949 | p = self.pixels[pos]
|
|---|
| 950 | r = (p >> 16) & 0xff
|
|---|
| 951 | g = (p >> 8) & 0xff
|
|---|
| 952 | b = (p) & 0xff
|
|---|
| 953 |
|
|---|
| 954 | if i == 0: # Remember background colour
|
|---|
| 955 | self.network[self.BGCOLOR] = [b, g, r]
|
|---|
| 956 |
|
|---|
| 957 | j = self.specialFind(b, g, r)
|
|---|
| 958 | if j < 0:
|
|---|
| 959 | j = self.contest(b, g, r)
|
|---|
| 960 |
|
|---|
| 961 | if j >= self.SPECIALS: # Don't learn for specials
|
|---|
| 962 | a = (1.0 * alpha) / self.INITALPHA
|
|---|
| 963 | self.altersingle(a, j, b, g, r)
|
|---|
| 964 | if rad > 0:
|
|---|
| 965 | self.alterneigh(a, rad, j, b, g, r)
|
|---|
| 966 |
|
|---|
| 967 | pos = (pos + step) % lengthcount
|
|---|
| 968 |
|
|---|
| 969 | i += 1
|
|---|
| 970 | if i % delta == 0:
|
|---|
| 971 | alpha -= alpha / alphadec
|
|---|
| 972 | biasRadius -= biasRadius / self.RADIUSDEC
|
|---|
| 973 | rad = biasRadius >> self.RADIUSBIASSHIFT
|
|---|
| 974 | if rad <= 1:
|
|---|
| 975 | rad = 0
|
|---|
| 976 |
|
|---|
| 977 | finalAlpha = (1.0 * alpha)/self.INITALPHA
|
|---|
| 978 | print("Finished 1D learning: final alpha = %1.2f!" % finalAlpha)
|
|---|
| 979 |
|
|---|
| 980 | def fix(self):
|
|---|
| 981 | for i in range(self.NETSIZE):
|
|---|
| 982 | for j in range(3):
|
|---|
| 983 | x = int(0.5 + self.network[i, j])
|
|---|
| 984 | x = max(0, x)
|
|---|
| 985 | x = min(255, x)
|
|---|
| 986 | self.colormap[i, j] = x
|
|---|
| 987 | self.colormap[i, 3] = i
|
|---|
| 988 |
|
|---|
| 989 | def inxbuild(self):
|
|---|
| 990 | previouscol = 0
|
|---|
| 991 | startpos = 0
|
|---|
| 992 | for i in range(self.NETSIZE):
|
|---|
| 993 | p = self.colormap[i]
|
|---|
| 994 | q = None
|
|---|
| 995 | smallpos = i
|
|---|
| 996 | smallval = p[1] # Index on g
|
|---|
| 997 | # Find smallest in i..self.NETSIZE-1
|
|---|
| 998 | for j in range(i + 1, self.NETSIZE):
|
|---|
| 999 | q = self.colormap[j]
|
|---|
| 1000 | if q[1] < smallval: # Index on g
|
|---|
| 1001 | smallpos = j
|
|---|
| 1002 | smallval = q[1] # Index on g
|
|---|
| 1003 |
|
|---|
| 1004 | q = self.colormap[smallpos]
|
|---|
| 1005 | # Swap p (i) and q (smallpos) entries
|
|---|
| 1006 | if i != smallpos:
|
|---|
| 1007 | p[:], q[:] = q, p.copy()
|
|---|
| 1008 |
|
|---|
| 1009 | # smallval entry is now in position i
|
|---|
| 1010 | if smallval != previouscol:
|
|---|
| 1011 | self.netindex[previouscol] = (startpos + i) >> 1
|
|---|
| 1012 | for j in range(previouscol + 1, smallval):
|
|---|
| 1013 | self.netindex[j] = i
|
|---|
| 1014 | previouscol = smallval
|
|---|
| 1015 | startpos = i
|
|---|
| 1016 | self.netindex[previouscol] = (startpos + self.MAXNETPOS) >> 1
|
|---|
| 1017 | for j in range(previouscol + 1, 256): # Really 256
|
|---|
| 1018 | self.netindex[j] = self.MAXNETPOS
|
|---|
| 1019 |
|
|---|
| 1020 | def paletteImage(self):
|
|---|
| 1021 | """PIL weird interface for making a paletted image: create an image
|
|---|
| 1022 | which already has the palette, and use that in Image.quantize. This
|
|---|
| 1023 | function returns this palette image."""
|
|---|
| 1024 | if self.pimage is None:
|
|---|
| 1025 | palette = []
|
|---|
| 1026 | for i in range(self.NETSIZE):
|
|---|
| 1027 | palette.extend(self.colormap[i][:3])
|
|---|
| 1028 |
|
|---|
| 1029 | palette.extend([0] * (256-self.NETSIZE) * 3)
|
|---|
| 1030 |
|
|---|
| 1031 | # a palette image to use for quant
|
|---|
| 1032 | self.pimage = Image.new("P", (1, 1), 0)
|
|---|
| 1033 | self.pimage.putpalette(palette)
|
|---|
| 1034 | return self.pimage
|
|---|
| 1035 |
|
|---|
| 1036 | def quantize(self, image):
|
|---|
| 1037 | """Use a kdtree to quickly find the closest palette colors for the
|
|---|
| 1038 | pixels
|
|---|
| 1039 |
|
|---|
| 1040 | :param image:
|
|---|
| 1041 | """
|
|---|
| 1042 | if get_cKDTree():
|
|---|
| 1043 | return self.quantize_with_scipy(image)
|
|---|
| 1044 | else:
|
|---|
| 1045 | print('Scipy not available, falling back to slower version.')
|
|---|
| 1046 | return self.quantize_without_scipy(image)
|
|---|
| 1047 |
|
|---|
| 1048 | def quantize_with_scipy(self, image):
|
|---|
| 1049 | w, h = image.size
|
|---|
| 1050 | px = np.asarray(image).copy()
|
|---|
| 1051 | px2 = px[:, :, :3].reshape((w * h, 3))
|
|---|
| 1052 |
|
|---|
| 1053 | cKDTree = get_cKDTree()
|
|---|
| 1054 | kdtree = cKDTree(self.colormap[:, :3], leafsize=10)
|
|---|
| 1055 | result = kdtree.query(px2)
|
|---|
| 1056 | colorindex = result[1]
|
|---|
| 1057 | print("Distance: %1.2f" % (result[0].sum()/(w * h)))
|
|---|
| 1058 | px2[:] = self.colormap[colorindex, :3]
|
|---|
| 1059 |
|
|---|
| 1060 | return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage())
|
|---|
| 1061 |
|
|---|
| 1062 | def quantize_without_scipy(self, image):
|
|---|
| 1063 | """" This function can be used if no scipy is available.
|
|---|
| 1064 | It's 7 times slower though.
|
|---|
| 1065 |
|
|---|
| 1066 | :param image:
|
|---|
| 1067 | """
|
|---|
| 1068 | w, h = image.size
|
|---|
| 1069 | px = np.asarray(image).copy()
|
|---|
| 1070 | memo = {}
|
|---|
| 1071 | for j in range(w):
|
|---|
| 1072 | for i in range(h):
|
|---|
| 1073 | key = (px[i, j, 0], px[i, j, 1], px[i, j, 2])
|
|---|
| 1074 | try:
|
|---|
| 1075 | val = memo[key]
|
|---|
| 1076 | except KeyError:
|
|---|
| 1077 | val = self.convert(*key)
|
|---|
| 1078 | memo[key] = val
|
|---|
| 1079 | px[i, j, 0], px[i, j, 1], px[i, j, 2] = val
|
|---|
| 1080 | return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage())
|
|---|
| 1081 |
|
|---|
| 1082 | def convert(self, *color):
|
|---|
| 1083 | i = self.inxsearch(*color)
|
|---|
| 1084 | return self.colormap[i, :3]
|
|---|
| 1085 |
|
|---|
| 1086 | def inxsearch(self, r, g, b):
|
|---|
| 1087 | """Search for BGR values 0..255 and return colour index"""
|
|---|
| 1088 | dists = (self.colormap[:, :3] - np.array([r, g, b]))
|
|---|
| 1089 | a = np.argmin((dists * dists).sum(1))
|
|---|
| 1090 | return a
|
|---|
| 1091 |
|
|---|
| 1092 | if __name__ == '__main__':
|
|---|
| 1093 | im = np.zeros((200, 200), dtype=np.uint8)
|
|---|
| 1094 | im[10: 30, :] = 100
|
|---|
| 1095 | im[:, 80: 120] = 255
|
|---|
| 1096 | im[-50: -40, :] = 50
|
|---|
| 1097 |
|
|---|
| 1098 | images = [im * 1.0, im * 0.8, im * 0.6, im * 0.4, im * 0]
|
|---|
| 1099 | writeGif('lala3.gif', images, duration=0.5, dither=0)
|
|---|