| 1 | <h2>DESCRIPTION</h2>
|
|---|
| 2 |
|
|---|
| 3 | <b>i.atcorr</b> performs atmospheric correction on the input raster
|
|---|
| 4 | map using the 6S algorithm (<em>Second Simulation of Satellite Signal
|
|---|
| 5 | in the Solar Spectrum</em>). A detailed algorithm description is
|
|---|
| 6 | available at the
|
|---|
| 7 | <a href="http://modis-sr.ltdri.org/">Land Surface
|
|---|
| 8 | Reflectance Science Computing Facility website</a>.
|
|---|
| 9 |
|
|---|
| 10 | <p>
|
|---|
| 11 | <em>Important note: Current region settings are ignored!</em> The region is adjusted
|
|---|
| 12 | to cover the input raster map before the atmospheric correction is
|
|---|
| 13 | performed. The previous settings are restored afterwards.
|
|---|
| 14 |
|
|---|
| 15 | <p>
|
|---|
| 16 | Because using a <b>elevation</b> and/or <b>visibility</b>
|
|---|
| 17 | raster map makes execution time much longer, it is advised to use
|
|---|
| 18 | the optimization flag <b>-o</b>.
|
|---|
| 19 | This flag tells <em>i.atcorr</em> to try and speedup calculations.
|
|---|
| 20 | However, this option will increase memory requirements.
|
|---|
| 21 |
|
|---|
| 22 | <p>
|
|---|
| 23 | If flag <b>-r</b> is used, the input raster data are treated as
|
|---|
| 24 | <em>reflectance</em>. Otherwise, the input raster data are treated
|
|---|
| 25 | as <em>radiance</em> values and are converted to reflectance at
|
|---|
| 26 | the <em>i.atcorr</em> runtime. The output data are always reflectance.
|
|---|
| 27 |
|
|---|
| 28 | <p>
|
|---|
| 29 | Note that the satellite overpass time has to be specified in Greenwich
|
|---|
| 30 | Mean Time (GMT).
|
|---|
| 31 |
|
|---|
| 32 | <p>
|
|---|
| 33 | An example 6S parameters:
|
|---|
| 34 |
|
|---|
| 35 | <div class="code"><pre>
|
|---|
| 36 | 8 - geometrical conditions=Landsat ETM+
|
|---|
| 37 | 2 19 13.00 -47.410 -20.234 - month day hh.ddd longitude latitude ("hh.ddd" is in decimal hours GMT)
|
|---|
| 38 | 1 - atmospheric mode=tropical
|
|---|
| 39 | 1 - aerosols model=continental
|
|---|
| 40 | 15 - visibility [km] (aerosol model concentration)
|
|---|
| 41 | -0.600 - mean target elevation above sea level [km] (here 600m asl)
|
|---|
| 42 | -1000 - sensor height (here, sensor on board a satellite)
|
|---|
| 43 | 64 - 4th band of ETM+ Landsat 7
|
|---|
| 44 | </pre></div>
|
|---|
| 45 |
|
|---|
| 46 | If the position is not available in longitude-latitude (WGS84), the
|
|---|
| 47 | <em><a href="m.proj.html">m.proj</a></em> conversion module can be
|
|---|
| 48 | used to reproject from a different projection.
|
|---|
| 49 |
|
|---|
| 50 | <h2>6S CODE PARAMETER CHOICES</h2>
|
|---|
| 51 |
|
|---|
| 52 | <h3>A. Geometrical conditions</h3>
|
|---|
| 53 |
|
|---|
| 54 | <table border="1">
|
|---|
| 55 |
|
|---|
| 56 | <tr>
|
|---|
| 57 | <td><b>Code</b></td>
|
|---|
| 58 | <td><b>Description</b></td>
|
|---|
| 59 | <td><b>Details</b></td>
|
|---|
| 60 | </tr>
|
|---|
| 61 |
|
|---|
| 62 | <tr>
|
|---|
| 63 | <td>1</td>
|
|---|
| 64 | <td><b>meteosat</b> observation</td>
|
|---|
| 65 | <td>enter month,day,decimal hour (universal time-hh.ddd)
|
|---|
| 66 | <br>
|
|---|
| 67 | n. of column,n. of line. (full scale 5000*2500) </td>
|
|---|
| 68 | </tr>
|
|---|
| 69 |
|
|---|
| 70 | <tr>
|
|---|
| 71 | <td>2</td>
|
|---|
| 72 | <td><b>goes east </b>observation</td>
|
|---|
| 73 | <td>enter month,day,decimal hour (universal time-hh.ddd)
|
|---|
| 74 | <br>
|
|---|
| 75 | n. of column,n. of line. (full scale 17000*12000)c</td>
|
|---|
| 76 | </tr>
|
|---|
| 77 |
|
|---|
| 78 | <tr>
|
|---|
| 79 | <td>3</td>
|
|---|
| 80 | <td><b>goes west</b> observation</td>
|
|---|
| 81 | <td>enter month,day,decimal hour (universal time-hh.ddd)
|
|---|
| 82 | <br>
|
|---|
| 83 | n. of column,n. of line. (full scale 17000*12000)</td>
|
|---|
| 84 | </tr>
|
|---|
| 85 |
|
|---|
| 86 | <tr>
|
|---|
| 87 | <td>4</td>
|
|---|
| 88 | <td><b>avhrr</b> (PM noaa)</td>
|
|---|
| 89 | <td>enter month,day,decimal hour (universal time-hh.ddd)
|
|---|
| 90 | <br>
|
|---|
| 91 | n. of column(1-2048),xlonan,hna
|
|---|
| 92 | <br>
|
|---|
| 93 | give long.(xlonan) and overpass hour (hna) at
|
|---|
| 94 | <br>
|
|---|
| 95 | the ascendant node at equator</td>
|
|---|
| 96 | </tr>
|
|---|
| 97 |
|
|---|
| 98 | <tr>
|
|---|
| 99 | <td>5</td>
|
|---|
| 100 | <td><b>avhrr</b> (AM noaa)</td>
|
|---|
| 101 | <td>enter month,day,decimal hour (universal time-hh.ddd)
|
|---|
| 102 | <br>
|
|---|
| 103 | n. of column(1-2048),xlonan,hna
|
|---|
| 104 | <br>
|
|---|
| 105 | give long.(xlonan) and overpass hour (hna) at
|
|---|
| 106 | <br>
|
|---|
| 107 | the ascendant node at equator</td>
|
|---|
| 108 | </tr>
|
|---|
| 109 |
|
|---|
| 110 | <tr>
|
|---|
| 111 | <td>6</td>
|
|---|
| 112 | <td><b>hrv</b> (spot)</td>
|
|---|
| 113 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 114 | </tr>
|
|---|
| 115 |
|
|---|
| 116 | <tr>
|
|---|
| 117 | <td>7</td>
|
|---|
| 118 | <td><b>tm</b> (landsat)</td>
|
|---|
| 119 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 120 | </tr>
|
|---|
| 121 |
|
|---|
| 122 | <tr>
|
|---|
| 123 | <td>8</td>
|
|---|
| 124 | <td><b>etm+</b> (landsat7)</td>
|
|---|
| 125 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 126 | </tr>
|
|---|
| 127 |
|
|---|
| 128 | <tr>
|
|---|
| 129 | <td>9</td>
|
|---|
| 130 | <td><b>liss</b> (IRS 1C)</td>
|
|---|
| 131 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 132 | </tr>
|
|---|
| 133 |
|
|---|
| 134 | <tr>
|
|---|
| 135 | <td>10</td>
|
|---|
| 136 | <td><b>aster</b></td>
|
|---|
| 137 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 138 | </tr>
|
|---|
| 139 |
|
|---|
| 140 | <tr>
|
|---|
| 141 | <td>11</td>
|
|---|
| 142 | <td><b>avnir</b></td>
|
|---|
| 143 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 144 | </tr>
|
|---|
| 145 |
|
|---|
| 146 | <tr>
|
|---|
| 147 | <td>12</td>
|
|---|
| 148 | <td><b>ikonos</b></td>
|
|---|
| 149 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 150 | </tr>
|
|---|
| 151 |
|
|---|
| 152 | <tr>
|
|---|
| 153 | <td>13</td>
|
|---|
| 154 | <td><b>RapidEye</b></td>
|
|---|
| 155 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 156 | </tr>
|
|---|
| 157 |
|
|---|
| 158 | <tr>
|
|---|
| 159 | <td>14</td>
|
|---|
| 160 | <td><b>VGT1 (SPOT4)</b></td>
|
|---|
| 161 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 162 | </tr>
|
|---|
| 163 |
|
|---|
| 164 | <tr>
|
|---|
| 165 | <td>15</td>
|
|---|
| 166 | <td><b>VGT2 (SPOT5)</b></td>
|
|---|
| 167 | <td>enter month,day,hh.ddd,long.,lat. *</td>
|
|---|
| 168 | </tr>
|
|---|
| 169 | </table>
|
|---|
| 170 |
|
|---|
| 171 | <blockquote>
|
|---|
| 172 | * <em>NOTE</em>: for HRV, TM, ETM+, LISS and ASTER experiments,
|
|---|
| 173 | longitude and latitude are the coordinates of the scene
|
|---|
| 174 | center. Latitude must be > 0 for northern hemisphere and < 0 for
|
|---|
| 175 | southern. Longitude must be > 0 for eastern hemisphere and < 0 for
|
|---|
| 176 | western.
|
|---|
| 177 | </blockquote>
|
|---|
| 178 |
|
|---|
| 179 | <h3>B. Atmospheric model</h3>
|
|---|
| 180 |
|
|---|
| 181 | <table border="1">
|
|---|
| 182 |
|
|---|
| 183 | <tr>
|
|---|
| 184 | <td><b>Code</b></td>
|
|---|
| 185 | <td><b>Meaning</b></td>
|
|---|
| 186 | </tr>
|
|---|
| 187 |
|
|---|
| 188 | <tr>
|
|---|
| 189 | <td>0</td>
|
|---|
| 190 | <td>no gaseous absorption</td>
|
|---|
| 191 | </tr>
|
|---|
| 192 |
|
|---|
| 193 | <tr>
|
|---|
| 194 | <td>1</td>
|
|---|
| 195 | <td>tropical</td>
|
|---|
| 196 | </tr>
|
|---|
| 197 |
|
|---|
| 198 | <tr>
|
|---|
| 199 | <td>2</td>
|
|---|
| 200 | <td>midlatitude summer</td>
|
|---|
| 201 | </tr>
|
|---|
| 202 |
|
|---|
| 203 | <tr>
|
|---|
| 204 | <td>3</td>
|
|---|
| 205 | <td>midlatitude winter</td>
|
|---|
| 206 | </tr>
|
|---|
| 207 |
|
|---|
| 208 | <tr>
|
|---|
| 209 | <td>4</td>
|
|---|
| 210 | <td>subarctic summer</td>
|
|---|
| 211 | </tr>
|
|---|
| 212 |
|
|---|
| 213 | <tr>
|
|---|
| 214 | <td>5</td>
|
|---|
| 215 | <td>subarctic winter</td>
|
|---|
| 216 | </tr>
|
|---|
| 217 |
|
|---|
| 218 | <tr>
|
|---|
| 219 | <td>6</td>
|
|---|
| 220 | <td>us standard 62</td>
|
|---|
| 221 | </tr>
|
|---|
| 222 |
|
|---|
| 223 | <tr>
|
|---|
| 224 | <td>7</td>
|
|---|
| 225 | <td>Define your own atmospheric model as a set of the following 5 parameters
|
|---|
| 226 | per each measurement:<br>
|
|---|
| 227 | <br>altitude [km]
|
|---|
| 228 | <br>pressure [mb]
|
|---|
| 229 | <br>temperature [k]
|
|---|
| 230 | <br>h2o density [g/m3]
|
|---|
| 231 | <br>o3 density [g/m3]<br>
|
|---|
| 232 | <br>For example: there is one radiosonde measurement for each altitude of
|
|---|
| 233 | 0-25km at a step of 1km, one measurment for each altitude of 25-50km at a step
|
|---|
| 234 | of 5km, and two single measurements for altitudes 70km and 100km. This makes 34
|
|---|
| 235 | measurments. In that case, there are 34*5 values to input.</td>
|
|---|
| 236 | </tr>
|
|---|
| 237 |
|
|---|
| 238 | <tr>
|
|---|
| 239 | <td>8</td>
|
|---|
| 240 | <td>Define your own atmospheric model providing values of the water vapor and
|
|---|
| 241 | ozone content:
|
|---|
| 242 | <br>
|
|---|
| 243 | <br>uw [g/cm2]
|
|---|
| 244 | <br>uo3 [cm-atm]
|
|---|
| 245 | <br>
|
|---|
| 246 | <br> The profile is taken from us62.</td>
|
|---|
| 247 | </tr>
|
|---|
| 248 |
|
|---|
| 249 | </table>
|
|---|
| 250 |
|
|---|
| 251 | <h3>C. Aerosols model</h3>
|
|---|
| 252 |
|
|---|
| 253 | <table border="1">
|
|---|
| 254 |
|
|---|
| 255 | <tr>
|
|---|
| 256 | <td><b>Code</b></td>
|
|---|
| 257 | <td><b>Meaning</b></td>
|
|---|
| 258 | <td><b>Details</b></td>
|
|---|
| 259 | </tr>
|
|---|
| 260 |
|
|---|
| 261 | <tr>
|
|---|
| 262 | <td>0</td>
|
|---|
| 263 | <td>no aerosols</td>
|
|---|
| 264 | <td> </td>
|
|---|
| 265 | </tr>
|
|---|
| 266 |
|
|---|
| 267 | <tr>
|
|---|
| 268 | <td>1</td>
|
|---|
| 269 | <td>continental model</td>
|
|---|
| 270 | <td> </td>
|
|---|
| 271 | </tr>
|
|---|
| 272 |
|
|---|
| 273 | <tr>
|
|---|
| 274 | <td>2</td>
|
|---|
| 275 | <td>maritime model</td>
|
|---|
| 276 | <td> </td>
|
|---|
| 277 | </tr>
|
|---|
| 278 |
|
|---|
| 279 | <tr>
|
|---|
| 280 | <td>3</td>
|
|---|
| 281 | <td>urban model</td>
|
|---|
| 282 | <td> </td>
|
|---|
| 283 | </tr>
|
|---|
| 284 |
|
|---|
| 285 | <tr>
|
|---|
| 286 | <td>4</td>
|
|---|
| 287 | <td>shettle model for background desert aerosol</td>
|
|---|
| 288 | <td> </td>
|
|---|
| 289 | </tr>
|
|---|
| 290 |
|
|---|
| 291 | <tr>
|
|---|
| 292 | <td>5</td>
|
|---|
| 293 | <td>biomass burning</td>
|
|---|
| 294 | <td> </td>
|
|---|
| 295 | </tr>
|
|---|
| 296 |
|
|---|
| 297 | <tr>
|
|---|
| 298 | <td>6</td>
|
|---|
| 299 | <td>stratospheric model</td>
|
|---|
| 300 | <td> </td>
|
|---|
| 301 | </tr>
|
|---|
| 302 |
|
|---|
| 303 | <tr>
|
|---|
| 304 | <td>7</td>
|
|---|
| 305 | <td>define your own model</td>
|
|---|
| 306 | <td>Enter the volumic percentage of each component:
|
|---|
| 307 | <br>
|
|---|
| 308 | <br>c(1) = volumic % of dust-like
|
|---|
| 309 | <br>c(2) = volumic % of water-soluble
|
|---|
| 310 | <br>c(3) = volumic % of oceanic
|
|---|
| 311 | <br>c(4) = volumic % of soot
|
|---|
| 312 | <br>
|
|---|
| 313 | <br>All values between 0 and 1.</td>
|
|---|
| 314 | </tr>
|
|---|
| 315 |
|
|---|
| 316 | <tr>
|
|---|
| 317 | <td>8</td>
|
|---|
| 318 | <td>define your own model</td>
|
|---|
| 319 | <td>Size distribution function: Multimodal Log Normal (up to 4 modes).</td>
|
|---|
| 320 | </tr>
|
|---|
| 321 |
|
|---|
| 322 | <tr>
|
|---|
| 323 | <td>9</td>
|
|---|
| 324 | <td>define your own model</td>
|
|---|
| 325 | <td>Size distribution function: Modified gamma.</td>
|
|---|
| 326 | </tr>
|
|---|
| 327 |
|
|---|
| 328 | <tr>
|
|---|
| 329 | <td>10</td>
|
|---|
| 330 | <td>define your own model</td>
|
|---|
| 331 | <td>Size distribution function: Junge Power-Law.</td>
|
|---|
| 332 | </tr>
|
|---|
| 333 |
|
|---|
| 334 | <tr>
|
|---|
| 335 | <td>11</td>
|
|---|
| 336 |
|
|---|
| 337 | <td>define your own model</td>
|
|---|
| 338 |
|
|---|
| 339 | <td>Sun-photometer measurements, 50 values max, entered as:
|
|---|
| 340 | <br>
|
|---|
| 341 | <br>r and d V / d (logr)
|
|---|
| 342 | <br>
|
|---|
| 343 | <br>where r is the radius [micron], V is the volume, d V / d (logr) [cm3/cm2/micron].
|
|---|
| 344 | <br>
|
|---|
| 345 | <br>Followed by:
|
|---|
| 346 | <br>
|
|---|
| 347 | <br>nr and ni for each wavelength
|
|---|
| 348 | <br>
|
|---|
| 349 | <br>where nr and ni are respectively the real and imaginary part of the
|
|---|
| 350 | refractive index.</td>
|
|---|
| 351 | </tr>
|
|---|
| 352 | </table>
|
|---|
| 353 |
|
|---|
| 354 | <h3>D. Aerosol concentration model (visibility)</h3>
|
|---|
| 355 |
|
|---|
| 356 | If you have an estimate of the meteorological parameter visibility
|
|---|
| 357 | v, enter directly the value of v [km] (the aerosol optical depth (AOD) will be
|
|---|
| 358 | computed from a standard aerosol profile).
|
|---|
| 359 | <p>If you have an estimate of aerosol optical depth, enter 0 for the
|
|---|
| 360 | visibility and in a following line enter the aerosol optical depth at 550nm
|
|---|
| 361 | (iaer means 'i' for input and 'aer' for aerosol), for example:<br>
|
|---|
| 362 | <div class="code"><pre>
|
|---|
| 363 | 0 - visibility
|
|---|
| 364 | 0.112 - aerosol optical depth 550 nm
|
|---|
| 365 | </pre></div>
|
|---|
| 366 |
|
|---|
| 367 | <p>
|
|---|
| 368 | NOTE: if iaer is 0, enter -1 for visibility.
|
|---|
| 369 |
|
|---|
| 370 | <h3>E. Target altitude (xps), sensor platform (xpp)</h3>
|
|---|
| 371 |
|
|---|
| 372 | Target altitude (xps, in negative [km]):
|
|---|
| 373 | <blockquote>xps >= 0 means the target is at the sea level.
|
|---|
| 374 | <br>otherwise xps expresses the altitude of the target (e.g., mean elevation)
|
|---|
| 375 | in [km], given as negative value
|
|---|
| 376 | </blockquote>
|
|---|
| 377 |
|
|---|
| 378 | <p>
|
|---|
| 379 | Sensor platform (xpp, in negative [km] or -1000):
|
|---|
| 380 | <blockquote>
|
|---|
| 381 | <br>xpp = -1000 means that the sensor is on board a satellite.
|
|---|
| 382 | <br>xpp = 0 means that the sensor is at the ground level.
|
|---|
| 383 | <br>-100 < xpp < 0 defines the altitude of the sensor expressed in [km];
|
|---|
| 384 | this altitude is given <b>relative to the target</b> altitude as negative value.
|
|---|
| 385 | </blockquote>
|
|---|
| 386 |
|
|---|
| 387 | <p>
|
|---|
| 388 | For aircraft simulations only (xpp is neither equal to 0 nor equal to -1000):
|
|---|
| 389 | <blockquote>
|
|---|
| 390 | puw,po3 (water vapor content,ozone content between the aircraft and the surface)
|
|---|
| 391 | <br>taerp (the aerosol optical thickness at 550nm between the aircraft and the
|
|---|
| 392 | surface)
|
|---|
| 393 | <p>If these data are not available, enter negative values for all of them.
|
|---|
| 394 | puw,po3 will then be interpolated from the us62 standard profile according
|
|---|
| 395 | to the values at the ground level. taerp will be computed according to a 2km
|
|---|
| 396 | exponential profile for aerosol.
|
|---|
| 397 | </blockquote>
|
|---|
| 398 |
|
|---|
| 399 | <h3>F. Sensor band</h3>
|
|---|
| 400 |
|
|---|
| 401 | <p>There are two possibilities: either define your own spectral conditions
|
|---|
| 402 | (codes -2, -1, 0, or 1) or choose a code indicating the band of one of the
|
|---|
| 403 | pre-defined satellites.
|
|---|
| 404 |
|
|---|
| 405 | <p>Define your own spectral conditions:
|
|---|
| 406 |
|
|---|
| 407 | <table border="1">
|
|---|
| 408 |
|
|---|
| 409 | <tr>
|
|---|
| 410 | <td><b>Code</b></td>
|
|---|
| 411 | <td><b>Meaning</b></td>
|
|---|
| 412 | </tr>
|
|---|
| 413 |
|
|---|
| 414 | <tr>
|
|---|
| 415 | <td>-2</td>
|
|---|
| 416 | <td>Enter wlinf, wlsup.
|
|---|
| 417 | <br>The filter function will be equal to 1 over the whole band (as iwave=0)
|
|---|
| 418 | but step by step output will be printed.</td>
|
|---|
| 419 | </tr>
|
|---|
| 420 |
|
|---|
| 421 | <tr>
|
|---|
| 422 | <td>-1</td>
|
|---|
| 423 | <td>Enter wl (monochr. cond, gaseous absorption is included).</td>
|
|---|
| 424 | </tr>
|
|---|
| 425 |
|
|---|
| 426 | <tr>
|
|---|
| 427 | <td>0</td>
|
|---|
| 428 | <td>Enter wlinf, wlsup.
|
|---|
| 429 | <br>The filter function will be equal to 1over the whole band.</td>
|
|---|
| 430 | </tr>
|
|---|
| 431 |
|
|---|
| 432 | <tr>
|
|---|
| 433 | <td>1</td>
|
|---|
| 434 | <td>Enter wlinf, wlsup and user's filter function s(lambda) by step of 0.0025
|
|---|
| 435 | micrometer.</td>
|
|---|
| 436 | </tr>
|
|---|
| 437 | </table>
|
|---|
| 438 |
|
|---|
| 439 | <p>
|
|---|
| 440 | Pre-defined satellite bands:
|
|---|
| 441 |
|
|---|
| 442 | <table border="1">
|
|---|
| 443 |
|
|---|
| 444 | <tr><td><b>Code</b></td><td><b>Meaning</b></td></tr>
|
|---|
| 445 |
|
|---|
| 446 | <tr><td>2</td><td><b>meteosat</b> vis band (0.350-1.110)</td></tr>
|
|---|
| 447 |
|
|---|
| 448 | <tr><td>3</td><td><b>goes east</b> band vis (0.490-0.900)</td></tr>
|
|---|
| 449 | <tr><td>4</td><td>goes west band vis (0.490-0.900)</td></tr>
|
|---|
| 450 |
|
|---|
| 451 | <tr><td>5</td><td><b>avhrr (noaa6)</b> band 1 (0.550-0.750)</td></tr>
|
|---|
| 452 | <tr><td>6</td><td>avhrr (noaa6) band 2 (0.690-1.120)</td></tr>
|
|---|
| 453 |
|
|---|
| 454 | <tr><td>7</td><td><b>avhrr (noaa7)</b> band 1 (0.500-0.800)</td></tr>
|
|---|
| 455 | <tr><td>8</td><td>avhrr (noaa7) band 2 (0.640-1.170)</td></tr>
|
|---|
| 456 |
|
|---|
| 457 | <tr><td>9</td><td><b>avhrr (noaa8)</b> band 1 (0.540-1.010)</td></tr>
|
|---|
| 458 | <tr><td>10</td><td>avhrr (noaa8) band 2 (0.680-1.120)</td></tr>
|
|---|
| 459 |
|
|---|
| 460 | <tr><td>11</td><td><b>avhrr (noaa9)</b> band 1 (0.530-0.810)</td></tr>
|
|---|
| 461 | <tr><td>12</td><td>avhrr (noaa9) band 1 (0.680-1.170)</td></tr>
|
|---|
| 462 |
|
|---|
| 463 | <tr><td>13</td><td><b>avhrr (noaa10)</b> band 1 (0.530-0.780)</td></tr>
|
|---|
| 464 | <tr><td>14</td><td>avhrr (noaa10) band 2 (0.600-1.190)</td></tr>
|
|---|
| 465 |
|
|---|
| 466 | <tr><td>15</td><td><b>avhrr (noaa11)</b> band 1 (0.540-0.820)</td></tr>
|
|---|
| 467 | <tr><td>16</td><td>avhrr (noaa11) band 2 (0.600-1.120)</td></tr>
|
|---|
| 468 |
|
|---|
| 469 | <tr><td>17</td><td><b>hrv1 (spot1)</b> band 1 (0.470-0.650)</td></tr>
|
|---|
| 470 | <tr><td>18</td><td>hrv1 (spot1) band 2 (0.600-0.720)</td></tr>
|
|---|
| 471 | <tr><td>19</td><td>hrv1 (spot1) band 3 (0.730-0.930)</td></tr>
|
|---|
| 472 | <tr><td>20</td><td>hrv1 (spot1) band pan (0.470-0.790)</td></tr>
|
|---|
| 473 |
|
|---|
| 474 | <tr><td>21</td><td><b>hrv2 (spot1)</b> band 1 (0.470-0.650)</td></tr>
|
|---|
| 475 | <tr><td>22</td><td>hrv2 (spot1) band 2 (0.590-0.730)</td></tr>
|
|---|
| 476 | <tr><td>23</td><td>hrv2 (spot1) band 3 (0.740-0.940)</td></tr>
|
|---|
| 477 | <tr><td>24</td><td>hrv2 (spot1) band pan (0.470-0.790)</td></tr>
|
|---|
| 478 |
|
|---|
| 479 | <tr><td>25</td><td><b>tm (landsat5)</b> band 1 (0.430-0.560)</td></tr>
|
|---|
| 480 | <tr><td>26</td><td>tm (landsat5) band 2 (0.500-0.650)</td></tr>
|
|---|
| 481 | <tr><td>27</td><td>tm (landsat5) band 3 (0.580-0.740)</td></tr>
|
|---|
| 482 | <tr><td>28</td><td>tm (landsat5) band 4 (0.730-0.950)</td></tr>
|
|---|
| 483 | <tr><td>29</td><td>tm (landsat5) band 5 (1.5025-1.890)</td></tr>
|
|---|
| 484 | <tr><td>30</td><td>tm (landsat5) band 7 (1.950-2.410)</td></tr>
|
|---|
| 485 |
|
|---|
| 486 | <tr><td>31</td><td><b>mss (landsat5)</b> band 1 (0.475-0.640)</td></tr>
|
|---|
| 487 | <tr><td>32</td><td>mss (landsat5) band 2 (0.580-0.750)</td></tr>
|
|---|
| 488 | <tr><td>33</td><td>mss (landsat5) band 3 (0.655-0.855)</td></tr>
|
|---|
| 489 | <tr><td>34</td><td>mss (landsat5) band 4 (0.785-1.100)</td></tr>
|
|---|
| 490 |
|
|---|
| 491 | <tr><td>35</td><td><b>MAS (ER2)</b> band 1 (0.5025-0.5875)</td></tr>
|
|---|
| 492 | <tr><td>36</td><td>MAS (ER2) band 2 (0.6075-0.7000)</td></tr>
|
|---|
| 493 | <tr><td>37</td><td>MAS (ER2) band 3 (0.8300-0.9125)</td></tr>
|
|---|
| 494 | <tr><td>38</td><td>MAS (ER2) band 4 (0.9000-0.9975)</td></tr>
|
|---|
| 495 | <tr><td>39</td><td>MAS (ER2) band 5 (1.8200-1.9575)</td></tr>
|
|---|
| 496 | <tr><td>40</td><td>MAS (ER2) band 6 (2.0950-2.1925)</td></tr>
|
|---|
| 497 | <tr><td>41</td><td>MAS (ER2) band 7 (3.5800-3.8700)</td></tr>
|
|---|
| 498 |
|
|---|
| 499 | <tr><td>42</td><td><b>MODIS</b> band 1 (0.6100-0.6850)</td></tr>
|
|---|
| 500 | <tr><td>43</td><td>MODIS band 2 (0.8200-0.9025)</td></tr>
|
|---|
| 501 | <tr><td>44</td><td>MODIS band 3 (0.4500-0.4825)</td></tr>
|
|---|
| 502 | <tr><td>45</td><td>MODIS band 4 (0.5400-0.5700)</td></tr>
|
|---|
| 503 | <tr><td>46</td><td>MODIS band 5 (1.2150-1.2700)</td></tr>
|
|---|
| 504 | <tr><td>47</td><td>MODIS band 6 (1.6000-1.6650)</td></tr>
|
|---|
| 505 | <tr><td>48</td><td>MODIS band 7 (2.0575-2.1825)</td></tr>
|
|---|
| 506 |
|
|---|
| 507 | <tr><td>49</td><td><b>avhrr (noaa12)</b> band 1 (0.500-1.000)</td></tr>
|
|---|
| 508 | <tr><td>50</td><td>avhrr (noaa12) band 2 (0.650-1.120)</td></tr>
|
|---|
| 509 |
|
|---|
| 510 | <tr><td>51</td><td><b>avhrr (noaa14)</b> band 1 (0.500-1.110)</td></tr>
|
|---|
| 511 | <tr><td>52</td><td>avhrr (noaa14) band 2 (0.680-1.100)</td></tr>
|
|---|
| 512 |
|
|---|
| 513 | <tr><td>53</td><td><b>POLDER</b> band 1 (0.4125-0.4775)</td></tr>
|
|---|
| 514 | <tr><td>54</td><td>POLDER band 2 (non polar) (0.4100-0.5225)</td></tr>
|
|---|
| 515 | <tr><td>55</td><td>POLDER band 3 (non polar) (0.5325-0.5950)</td></tr>
|
|---|
| 516 | <tr><td>56</td><td>POLDER band 4 P1 (0.6300-0.7025)</td></tr>
|
|---|
| 517 | <tr><td>57</td><td>POLDER band 5 (non polar) (0.7450-0.7800)</td></tr>
|
|---|
| 518 | <tr><td>58</td><td>POLDER band 6 (non polar) (0.7000-0.8300)</td></tr>
|
|---|
| 519 | <tr><td>59</td><td>POLDER band 7 P1 (0.8100-0.9200)</td></tr>
|
|---|
| 520 | <tr><td>60</td><td>POLDER band 8 (non polar) (0.8650-0.9400)</td></tr>
|
|---|
| 521 |
|
|---|
| 522 | <tr><td>61</td><td><b>etm+ (landsat7)</b> band 1 (0.435-0.520)</td></tr>
|
|---|
| 523 | <tr><td>62</td><td>etm+ (landsat7) band 2 (0.506-0.621)</td></tr>
|
|---|
| 524 | <tr><td>63</td><td>etm+ (landsat7) band 3 (0.622-0.702)</td></tr>
|
|---|
| 525 | <tr><td>64</td><td>etm+ (landsat7) band 4 (0.751-0.911)</td></tr>
|
|---|
| 526 | <tr><td>65</td><td>etm+ (landsat7) band 5 (1.512-1.792)</td></tr>
|
|---|
| 527 | <tr><td>66</td><td>etm+ (landsat7) band 7 (2.020-2.380)</td></tr>
|
|---|
| 528 | <tr><td>67</td><td>etm+ (landsat7) band 8 (0.504-0.909)</td></tr>
|
|---|
| 529 |
|
|---|
| 530 | <tr><td>68</td><td><b>liss (IRC 1C)</b> band 2 (0.502-0.620)</td></tr>
|
|---|
| 531 | <tr><td>69</td><td>liss (IRC 1C) band 3 (0.612-0.700)</td></tr>
|
|---|
| 532 | <tr><td>70</td><td>liss (IRC 1C) band 4 (0.752-0.880)</td></tr>
|
|---|
| 533 | <tr><td>71</td><td>liss (IRC 1C) band 5 (1.452-1.760)</td></tr>
|
|---|
| 534 |
|
|---|
| 535 | <tr><td>72</td><td><b>aster </b> band 1 (0.480-0.645)</td></tr>
|
|---|
| 536 | <tr><td>73</td><td>aster band 2 (0.588-0.733)</td></tr>
|
|---|
| 537 | <tr><td>74</td><td>aster band 3N (0.723-0.913)</td></tr>
|
|---|
| 538 | <tr><td>75</td><td>aster band 4 (1.530-1.750)</td></tr>
|
|---|
| 539 | <tr><td>76</td><td>aster band 5 (2.103-2.285)</td></tr>
|
|---|
| 540 | <tr><td>77</td><td>aster band 6 (2.105-2.298)</td></tr>
|
|---|
| 541 | <tr><td>78</td><td>aster band 7 (2.200-2.393)</td></tr>
|
|---|
| 542 | <tr><td>79</td><td>aster band 8 (2.248-2.475)</td></tr>
|
|---|
| 543 | <tr><td>80</td><td>aster band 9 (2.295-2.538)</td></tr>
|
|---|
| 544 |
|
|---|
| 545 | <tr><td>81</td><td><b>avnir</b> band 1 (0.390-0.550)</td></tr>
|
|---|
| 546 | <tr><td>82</td><td>avnir band 2 (0.485-0.695)</td></tr>
|
|---|
| 547 | <tr><td>83</td><td>avnir band 3 (0.545-0.745)</td></tr>
|
|---|
| 548 | <tr><td>84</td><td>avnir band 4 (0.700-0.925)</td></tr>
|
|---|
| 549 |
|
|---|
| 550 | <tr><td>85</td><td><b>ikonos</b> Green band (0.350-1.035)</td></tr>
|
|---|
| 551 | <tr><td>86</td><td>ikonos Red band (0.350-1.035)</td></tr>
|
|---|
| 552 | <tr><td>87</td><td>ikonos NIR band (0.350-1.035)</td></tr>
|
|---|
| 553 |
|
|---|
| 554 | <tr><td>88</td><td><b>RapidEye</b> Blue band (0.438-0.513)</td></tr>
|
|---|
| 555 | <tr><td>89</td><td>RapidEye Green band (0.463-0.594)</td></tr>
|
|---|
| 556 | <tr><td>90</td><td>RapidEye Red band (0.624-0.690)</td></tr>
|
|---|
| 557 | <tr><td>91</td><td>RapidEye RedEdge band (0.500-0.737)</td></tr>
|
|---|
| 558 | <tr><td>92</td><td>RapidEye NIR band (0.520-0.862)</td></tr>
|
|---|
| 559 |
|
|---|
| 560 | <tr><td>93</td><td><b>VGT1 (SPOT4)</b> band 0 (0.400-0.500)</td></tr>
|
|---|
| 561 | <tr><td>94</td><td>VGT1 (SPOT4) band 2 (0.580-0.782)</td></tr>
|
|---|
| 562 | <tr><td>95</td><td>VGT1 (SPOT4) band 3 (0.700-1.030)</td></tr>
|
|---|
| 563 | <tr><td>96</td><td>VGT1 (SPOT4) MIR band (1.450-1.800)</td></tr>
|
|---|
| 564 |
|
|---|
| 565 | <tr><td>97</td><td><b>VGT2 (SPOT5)</b> band 0 (0.400-0.550)</td></tr>
|
|---|
| 566 | <tr><td>98</td><td>VGT2 (SPOT5) band 2 (0.580-0.780)</td></tr>
|
|---|
| 567 | <tr><td>99</td><td>VGT2 (SPOT5) band 3 (0.700-1.000)</td></tr>
|
|---|
| 568 | <tr><td>100</td><td>VGT2 (SPOT5) MIR band (1.450-1.800)</td></tr>
|
|---|
| 569 | </table>
|
|---|
| 570 |
|
|---|
| 571 | <h2>EXAMPLES</h2>
|
|---|
| 572 |
|
|---|
| 573 | <h3>Atmospheric correction of a LANDSAT-7 channel</h3>
|
|---|
| 574 |
|
|---|
| 575 | The example is based on the North Carolina sample dataset (GMT -5 hours).
|
|---|
| 576 | First we set the computational region to the satellite map, e.g. channel 4:
|
|---|
| 577 | <div class="code"><pre>
|
|---|
| 578 | g.region rast=lsat7_2002_40 -p
|
|---|
| 579 | </pre></div>
|
|---|
| 580 |
|
|---|
| 581 | It is important to verify the available metadata for the sun position which
|
|---|
| 582 | has to be defined for the atmospheric correction. An option is to check the
|
|---|
| 583 | satellite overpass time with sun position as reported in
|
|---|
| 584 | <a href="ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r035_7x20020524.ETM-EarthSat-Orthorectified/p016r035_7x20020524.met">metadata</a>. For the North Carolina sample dataset, they have also been
|
|---|
| 585 | stored for each channel and can be retrieved like this:
|
|---|
| 586 |
|
|---|
| 587 | <div class="code"><pre>
|
|---|
| 588 | r.info lsat7_2002_40
|
|---|
| 589 | </pre></div>
|
|---|
| 590 |
|
|---|
| 591 | In this case, we have: SUN_AZIMUTH = 120.8810347, SUN_ELEVATION = 64.7730999.
|
|---|
| 592 | <p>
|
|---|
| 593 |
|
|---|
| 594 | If the sun position metadata are unavailable, we can also calculate
|
|---|
| 595 | them from the overpass time as follows
|
|---|
| 596 | (<em><a href="r.sunmask.html">r.sunmask</a></em>
|
|---|
| 597 | uses <a href="http://www.nrel.gov/midc/solpos/solpos.html">SOLPOS</a>):
|
|---|
| 598 | <div class="code"><pre>
|
|---|
| 599 | r.sunmask -s elev=elevation out=dummy year=2002 month=5 day=24 hour=10 min=42 sec=7 timezone=-5
|
|---|
| 600 | # .. reports: sun azimuth: 121.342461, sun angle above horz.(refraction corrected): 65.396652
|
|---|
| 601 | </pre></div>
|
|---|
| 602 |
|
|---|
| 603 | If the overpass time is unknown, use the <a href="http://www-air.larc.nasa.gov/tools/predict.htm">Satellite Overpass Predictor</a>.
|
|---|
| 604 | <p>
|
|---|
| 605 | Convert DN (digital number = pixel values) to Radiance at top-of-atmosphere (TOA), using the
|
|---|
| 606 | formula
|
|---|
| 607 | <div class="code"><pre>
|
|---|
| 608 | Lλ = ((LMAXλ - LMINλ)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMINλ
|
|---|
| 609 | </pre></div>
|
|---|
| 610 | Where:
|
|---|
| 611 | <ul>
|
|---|
| 612 | <li> Lλ = Spectral Radiance at the sensor's aperture in Watt/(meter squared * ster * µm), the
|
|---|
| 613 | apparent radiance as seen by the satellite sensor;</li>
|
|---|
| 614 | <li> QCAL = the quantized calibrated pixel value in DN;</li>
|
|---|
| 615 | <li> LMINλ = the spectral radiance that is scaled to QCALMIN in watts/(meter squared * ster * µm);</li>
|
|---|
| 616 | <li> LMAXλ = the spectral radiance that is scaled to QCALMAX in watts/(meter squared * ster * µm);</li>
|
|---|
| 617 | <li> QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMINλ) in DN;</li>
|
|---|
| 618 | <li> QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAXλ) in DN=255.</li>
|
|---|
| 619 | </ul>
|
|---|
| 620 |
|
|---|
| 621 | LMINλ and LMAXλ are the radiances related to the minimal and maximal DN value, and are reported
|
|---|
| 622 | in the metadata file for each image, or in the table 1. High gain or low gain is also reported
|
|---|
| 623 | in the metadata file of each Landsat image. The minimal DN value (QCALMIN) is 1 for Landsat ETM+
|
|---|
| 624 | images (see
|
|---|
| 625 | <a href="http://landsathandbook.gsfc.nasa.gov/handbook/handbook_htmls/chapter11/chapter11.html">Landsat handbook</a>),
|
|---|
| 626 | and the maximal DN value (QCALMAX) is 255. QCAL is the DN value for every
|
|---|
| 627 | separate pixel in the Landsat image.
|
|---|
| 628 | <p>
|
|---|
| 629 | We extract the coefficients and apply them in order to obtain the radiance map:
|
|---|
| 630 | <div class="code"><pre>
|
|---|
| 631 | CHAN=4
|
|---|
| 632 | r.info lsat7_2002_${CHAN}0 -h | tr '\n' ' ' | sed 's+ ++g' | tr ':' '\n' | grep "LMIN_BAND${CHAN}\|LMAX_BAND${CHAN}"
|
|---|
| 633 | LMAX_BAND4=241.100,p016r035_7x20020524.met
|
|---|
| 634 | LMIN_BAND4=-5.100,p016r035_7x20020524.met
|
|---|
| 635 | QCALMAX_BAND4=255.0,p016r035_7x20020524.met
|
|---|
| 636 | QCALMIN_BAND4=1.0,p016r035_7x20020524.met
|
|---|
| 637 | </pre></div>
|
|---|
| 638 |
|
|---|
| 639 | Conversion to radiance (this calculation is done for band 4, for the other bands, the numbers in italics
|
|---|
| 640 | need to be replaced with their related values):
|
|---|
| 641 |
|
|---|
| 642 | <div class="code"><pre>
|
|---|
| 643 | r.mapcalc "lsat7_2002_40_rad=((241.1 - (-5.1)) / (255.0 - 1.0)) * (lsat7_2002_40 - 1.0) + (-5.1)"
|
|---|
| 644 | </pre></div>
|
|---|
| 645 |
|
|---|
| 646 |
|
|---|
| 647 | <div class="code"><pre>
|
|---|
| 648 | # find mean elevation (target above sea level, used as initialization value in control file)
|
|---|
| 649 | r.univar elevation
|
|---|
| 650 | </pre></div>
|
|---|
| 651 |
|
|---|
| 652 | Create a control file 'icnd.txt' for channel 4 (NIR), based on metadata. For the overpass time,
|
|---|
| 653 | we need to define decimal hours:<br>
|
|---|
| 654 | 10:42:07 NC local time = 10.70 decimal hours (decimal minutes: 42 * 100 / 60) which is 15.70 GMT:
|
|---|
| 655 |
|
|---|
| 656 | <div class="code"><pre>
|
|---|
| 657 | #--------- start of control file -----
|
|---|
| 658 | 8 - geometrical conditions=Landsat ETM+
|
|---|
| 659 | 5 24 15.70 -78.691 35.749 - month day hh.ddd longitude latitude ("hh.ddd" is in GMT decimal hours)
|
|---|
| 660 | 2 - atmospheric mode=midlatitude summer
|
|---|
| 661 | 1 - aerosols model=continental
|
|---|
| 662 | 50 - visibility [km] (aerosol model concentration)
|
|---|
| 663 | -0.110 - mean target elevation above sea level [km]
|
|---|
| 664 | -1000 - sensor on board a satellite
|
|---|
| 665 | 64 - 4th band of ETM+ Landsat 7
|
|---|
| 666 | #--------- end of control file -------
|
|---|
| 667 | </pre></div>
|
|---|
| 668 |
|
|---|
| 669 | Finally, run the atmospheric correction (-r for reflectance input map; -a for date >July 2000;
|
|---|
| 670 | -o to use cache acceleration):
|
|---|
| 671 | <div class="code"><pre>
|
|---|
| 672 | i.atcorr -r -a -o lsat7_2002_40_rad ialt=elevation icnd=icnd_lsat4.txt oimg=lsat7_2002_40_atcorr
|
|---|
| 673 | </pre></div>
|
|---|
| 674 |
|
|---|
| 675 | Note that the altitude value from 'icnd_lsat4.txt' file is read at the beginning
|
|---|
| 676 | to compute the initial transform. It is necessary to give a value which could
|
|---|
| 677 | be the mean value of the elevation model. For the atmospheric correction then
|
|---|
| 678 | the raster elevation values are used from the map.
|
|---|
| 679 | <p>
|
|---|
| 680 | Note that the process is computationally intensive.<br>
|
|---|
| 681 | Note also, that <em>i.atcorr</em> reports solar elevation angle above horizon rather than solar zenith angle.
|
|---|
| 682 |
|
|---|
| 683 | <h2><font color="red">REMAINING DOCUMENTATION ISSUES</font></h2>
|
|---|
| 684 | 1. The influence and importance of the visibility value or map should be
|
|---|
| 685 | explained, also how to obtain an estimate for either visibility or aerosol
|
|---|
| 686 | optical depth at 550nm.
|
|---|
| 687 |
|
|---|
| 688 | <h2>SEE ALSO</h2>
|
|---|
| 689 |
|
|---|
| 690 | GRASS Wiki page about
|
|---|
| 691 | <a href="http://grass.osgeo.org/wiki/Atmospheric_correction">Atmospheric correction</a>
|
|---|
| 692 | <p>
|
|---|
| 693 | <em>
|
|---|
| 694 | <a href="r.info.html">r.info</a>,
|
|---|
| 695 | <a href="r.mapcalc.html">r.mapcalc</a>,
|
|---|
| 696 | <a href="r.univar.html">r.univar</a>
|
|---|
| 697 | </em>
|
|---|
| 698 |
|
|---|
| 699 | <h2>REFERENCES</h2>
|
|---|
| 700 |
|
|---|
| 701 | <ul>
|
|---|
| 702 | <li> Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997,
|
|---|
| 703 | Second simulation of the satellite signal in the solar spectrum, 6S: An
|
|---|
| 704 | overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686.
|
|---|
| 705 | <!-- too new:
|
|---|
| 706 | <li> <a href="http://6s.ltdri.org/6S_code2_thinner_stuff/6S_ltdri_org_manual.htm">6S manual
|
|---|
| 707 | (new vector version; i.atcorr is based on the older scalar version)</a>
|
|---|
| 708 | at the <a href="http://6s.ltdri.org">6S homepage</a> of the Land Surface Reflectance
|
|---|
| 709 | Science Computing Facility
|
|---|
| 710 | -->
|
|---|
| 711 | <li> 6S Manual: <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P1.pdf">PDF1</a>,
|
|---|
| 712 | <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P2.pdf">PDF2</a>,
|
|---|
| 713 | and <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P3.pdf">PDF3</a>
|
|---|
| 714 | <li>RapidEye sensors have been provided by <a href="http://www.rapideye.de/">RapidEye AG, Germany</a>
|
|---|
| 715 | </ul>
|
|---|
| 716 |
|
|---|
| 717 |
|
|---|
| 718 | <h2>AUTHORS</h2>
|
|---|
| 719 |
|
|---|
| 720 | <p><em>Original version of the program for GRASS 5:</em>
|
|---|
| 721 | <br>Christo Zietsman, 13422863(at)sun.ac.za
|
|---|
| 722 |
|
|---|
| 723 | <p><em>Code clean-up and port to GRASS 6.3, 15.12.2006:</em>
|
|---|
| 724 | <br>Yann Chemin, ychemin(at)gmail.com
|
|---|
| 725 |
|
|---|
| 726 | <p><em>Documentation clean-up + IRS LISS sensor addition 5/2009:</em>
|
|---|
| 727 | <br>Markus Neteler, FEM, Italy
|
|---|
| 728 |
|
|---|
| 729 | <p><em>ASTER sensor addition 7/2009:</em>
|
|---|
| 730 | <br>Michael Perdue, Canada
|
|---|
| 731 |
|
|---|
| 732 | <p><em>AVNIR, IKONOS sensors addition 7/2010:</em>
|
|---|
| 733 | <br>Daniel Victoria, Anne Ghisla
|
|---|
| 734 |
|
|---|
| 735 | <p><em>RapidEye sensors addition 11/2010:</em>
|
|---|
| 736 | <br>Peter Löwe, Anne Ghisla
|
|---|
| 737 |
|
|---|
| 738 | <p><em>VGT1 and VGT2 sensors addition from <a href="http://6s.ltdri.org/">6SV-1.1 sources</a>, addition 07/2011:</em>
|
|---|
| 739 | <br>Alfredo Alessandrini, Anne Ghisla
|
|---|
| 740 |
|
|---|
| 741 | <p>
|
|---|
| 742 | <i>Last changed: $Date: 2011-09-27 16:00:47 +0000 (Tue, 27 Sep 2011) $</i>
|
|---|
| 743 |
|
|---|