source: grass/tags/release_20120112_grass_6_4_2RC3/imagery/i.atcorr/description.html

Last change on this file was 48499, checked in by aghisla, 13 years ago

Added SPOT4 and SPOT5 also to 6.4 branch.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id
  • Property svn:mime-type set to text/html
File size: 24.7 KB
Line 
1<h2>DESCRIPTION</h2>
2
3<b>i.atcorr</b> performs atmospheric correction on the input raster
4map using the 6S algorithm (<em>Second Simulation of Satellite Signal
5in the Solar Spectrum</em>). A detailed algorithm description is
6available at the
7<a href="http://modis-sr.ltdri.org/">Land Surface
8Reflectance Science Computing Facility website</a>.
9
10<p>
11<em>Important note: Current region settings are ignored!</em> The region is adjusted
12to cover the input raster map before the atmospheric correction is
13performed. The previous settings are restored afterwards.
14
15<p>
16Because using a <b>elevation</b> and/or <b>visibility</b>
17raster map makes execution time much longer, it is advised to use
18the optimization flag <b>-o</b>.
19This flag tells <em>i.atcorr</em> to try and speedup calculations.
20However, this option will increase memory requirements.
21
22<p>
23If flag <b>-r</b> is used, the input raster data are treated as
24<em>reflectance</em>. Otherwise, the input raster data are treated
25as <em>radiance</em> values and are converted to reflectance at
26the <em>i.atcorr</em> runtime. The output data are always reflectance.
27
28<p>
29Note that the satellite overpass time has to be specified in Greenwich
30Mean Time (GMT).
31
32<p>
33An example 6S parameters:
34
35<div class="code"><pre>
368 - geometrical conditions=Landsat ETM+
372 19 13.00 -47.410 -20.234 - month day hh.ddd longitude latitude ("hh.ddd" is in decimal hours GMT)
381 - atmospheric mode=tropical
391 - aerosols model=continental
4015 - visibility [km] (aerosol model concentration)
41-0.600 - mean target elevation above sea level [km] (here 600m asl)
42-1000 - sensor height (here, sensor on board a satellite)
4364 - 4th band of ETM+ Landsat 7
44</pre></div>
45
46If the position is not available in longitude-latitude (WGS84), the
47<em><a href="m.proj.html">m.proj</a></em> conversion module can be
48used to reproject from a different projection.
49
50<h2>6S CODE PARAMETER CHOICES</h2>
51
52<h3>A. Geometrical conditions</h3>
53
54<table border="1">
55
56<tr>
57<td><b>Code</b></td>
58<td><b>Description</b></td>
59<td><b>Details</b></td>
60</tr>
61
62<tr>
63<td>1</td>
64<td><b>meteosat</b> observation</td>
65<td>enter month,day,decimal hour (universal time-hh.ddd)
66<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
67n. of column,n. of line. (full scale 5000*2500)&nbsp;</td>
68</tr>
69
70<tr>
71<td>2</td>
72<td><b>goes east </b>observation</td>
73<td>enter month,day,decimal hour (universal time-hh.ddd)
74<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
75n. of column,n. of line. (full scale 17000*12000)c</td>
76</tr>
77
78<tr>
79<td>3</td>
80<td><b>goes west</b> observation</td>
81<td>enter month,day,decimal hour (universal time-hh.ddd)
82<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
83n. of column,n. of line. (full scale 17000*12000)</td>
84</tr>
85
86<tr>
87<td>4</td>
88<td><b>avhrr</b> (PM noaa)</td>
89<td>enter month,day,decimal hour (universal time-hh.ddd)
90<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
91n. of column(1-2048),xlonan,hna
92<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
93give long.(xlonan) and overpass hour (hna) at
94<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
95the ascendant node at equator</td>
96</tr>
97
98<tr>
99<td>5</td>
100<td><b>avhrr</b> (AM noaa)</td>
101<td>enter month,day,decimal hour (universal time-hh.ddd)
102<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
103n. of column(1-2048),xlonan,hna
104<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
105give long.(xlonan) and overpass hour (hna) at
106<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
107the ascendant node at equator</td>
108</tr>
109
110<tr>
111<td>6</td>
112<td><b>hrv</b> (spot)</td>
113<td>enter month,day,hh.ddd,long.,lat. *</td>
114</tr>
115
116<tr>
117<td>7</td>
118<td><b>tm</b> (landsat)</td>
119<td>enter month,day,hh.ddd,long.,lat. *</td>
120</tr>
121
122<tr>
123<td>8</td>
124<td><b>etm+</b> (landsat7)</td>
125<td>enter month,day,hh.ddd,long.,lat. *</td>
126</tr>
127
128<tr>
129<td>9</td>
130<td><b>liss</b> (IRS 1C)</td>
131<td>enter month,day,hh.ddd,long.,lat. *</td>
132</tr>
133
134<tr>
135<td>10</td>
136<td><b>aster</b></td>
137<td>enter month,day,hh.ddd,long.,lat. *</td>
138</tr>
139
140<tr>
141<td>11</td>
142<td><b>avnir</b></td>
143<td>enter month,day,hh.ddd,long.,lat. *</td>
144</tr>
145
146<tr>
147<td>12</td>
148<td><b>ikonos</b></td>
149<td>enter month,day,hh.ddd,long.,lat. *</td>
150</tr>
151
152<tr>
153<td>13</td>
154<td><b>RapidEye</b></td>
155<td>enter month,day,hh.ddd,long.,lat. *</td>
156</tr>
157
158<tr>
159<td>14</td>
160<td><b>VGT1 (SPOT4)</b></td>
161<td>enter month,day,hh.ddd,long.,lat. *</td>
162</tr>
163
164<tr>
165<td>15</td>
166<td><b>VGT2 (SPOT5)</b></td>
167<td>enter month,day,hh.ddd,long.,lat. *</td>
168</tr>
169</table>
170
171<blockquote>
172* <em>NOTE</em>: for HRV, TM, ETM+, LISS and ASTER experiments,
173longitude and latitude are the coordinates of the scene
174center. Latitude must be &gt; 0 for northern hemisphere and &lt; 0 for
175southern. Longitude must be &gt; 0 for eastern hemisphere and &lt; 0 for
176western.
177</blockquote>
178
179<h3>B. Atmospheric model</h3>
180
181<table border="1">
182
183<tr>
184<td><b>Code</b></td>
185<td><b>Meaning</b></td>
186</tr>
187
188<tr>
189<td>0</td>
190<td>no gaseous absorption</td>
191</tr>
192
193<tr>
194<td>1</td>
195<td>tropical</td>
196</tr>
197
198<tr>
199<td>2</td>
200<td>midlatitude summer</td>
201</tr>
202
203<tr>
204<td>3</td>
205<td>midlatitude winter</td>
206</tr>
207
208<tr>
209<td>4</td>
210<td>subarctic summer</td>
211</tr>
212
213<tr>
214<td>5</td>
215<td>subarctic winter</td>
216</tr>
217
218<tr>
219<td>6</td>
220<td>us standard 62</td>
221</tr>
222
223<tr>
224<td>7</td>
225<td>Define your own atmospheric model as a set of the following 5 parameters
226per each measurement:<br>
227<br>altitude [km]
228<br>pressure [mb]
229<br>temperature [k]
230<br>h2o density [g/m3]
231<br>o3 density [g/m3]<br>
232<br>For example: there is one radiosonde measurement for each altitude of
2330-25km at a step of 1km, one measurment for each altitude of 25-50km at a step
234of 5km, and two single measurements for altitudes 70km and 100km. This makes 34
235measurments. In that case, there are 34*5 values to input.</td>
236</tr>
237
238<tr>
239<td>8</td>
240<td>Define your own atmospheric model providing values of the water vapor and
241ozone content:
242<br>
243<br>uw [g/cm2]
244<br>uo3 [cm-atm]
245<br>
246<br> The profile is taken from us62.</td>
247</tr>
248
249</table>
250
251<h3>C. Aerosols model</h3>
252
253<table border="1">
254
255<tr>
256<td><b>Code</b></td>
257<td><b>Meaning</b></td>
258<td><b>Details</b></td>
259</tr>
260
261<tr>
262<td>0</td>
263<td>no aerosols</td>
264<td>&nbsp;</td>
265</tr>
266
267<tr>
268<td>1</td>
269<td>continental model</td>
270<td>&nbsp;</td>
271</tr>
272
273<tr>
274<td>2</td>
275<td>maritime model</td>
276<td>&nbsp;</td>
277</tr>
278
279<tr>
280<td>3</td>
281<td>urban model</td>
282<td>&nbsp;</td>
283</tr>
284
285<tr>
286<td>4</td>
287<td>shettle model for background desert aerosol</td>
288<td>&nbsp;</td>
289</tr>
290
291<tr>
292<td>5</td>
293<td>biomass burning</td>
294<td>&nbsp;</td>
295</tr>
296
297<tr>
298<td>6</td>
299<td>stratospheric model</td>
300<td>&nbsp;</td>
301</tr>
302
303<tr>
304<td>7</td>
305<td>define your own model</td>
306<td>Enter the volumic percentage of each component:
307<br>
308<br>c(1) = volumic % of dust-like
309<br>c(2) = volumic % of water-soluble
310<br>c(3) = volumic % of oceanic
311<br>c(4) = volumic % of soot
312<br>
313<br>All values between 0 and 1.</td>
314</tr>
315
316<tr>
317<td>8</td>
318<td>define your own model</td>
319<td>Size distribution function: Multimodal Log Normal (up to 4 modes).</td>
320</tr>
321
322<tr>
323<td>9</td>
324<td>define your own model</td>
325<td>Size distribution function: Modified gamma.</td>
326</tr>
327
328<tr>
329<td>10</td>
330<td>define your own model</td>
331<td>Size distribution function: Junge Power-Law.</td>
332</tr>
333
334<tr>
335<td>11</td>
336
337<td>define your own model</td>
338
339<td>Sun-photometer measurements, 50 values max, entered as:
340<br>
341<br>r and d V / d (logr)
342<br>
343<br>where r is the radius [micron], V is the volume, d V / d (logr) [cm3/cm2/micron].
344<br>
345<br>Followed by:
346<br>
347<br>nr and ni for each wavelength
348<br>
349<br>where nr and ni are respectively the real and imaginary part of the
350refractive index.</td>
351</tr>
352</table>
353
354<h3>D. Aerosol concentration model (visibility)</h3>
355
356If you have an estimate of the meteorological parameter visibility
357v, enter directly the value of v [km] (the aerosol optical depth (AOD) will be
358computed from a standard aerosol profile).
359<p>If you have an estimate of aerosol optical depth, enter 0 for the
360visibility and in a following line enter the aerosol optical depth at 550nm
361(iaer means 'i' for input and 'aer' for aerosol), for example:<br>
362<div class="code"><pre>
3630 - visibility
3640.112 - aerosol optical depth 550 nm
365</pre></div>
366
367<p>
368NOTE: if iaer is 0, enter -1 for visibility.
369
370<h3>E. Target altitude (xps), sensor platform (xpp)</h3>
371
372Target altitude (xps, in negative [km]):
373<blockquote>xps &gt;= 0 means the target is at the sea level.
374<br>otherwise xps expresses the altitude of the target (e.g., mean elevation)
375in [km], given as negative value
376</blockquote>
377
378<p>
379Sensor platform (xpp, in negative [km] or -1000):
380<blockquote>
381<br>xpp = -1000 means that the sensor is on board a satellite.
382<br>xpp = 0 means that the sensor is at the ground level.
383<br>-100 &lt; xpp &lt; 0 defines the altitude of the sensor expressed in [km];
384 this altitude is given <b>relative to the target</b> altitude as negative value.
385</blockquote>
386
387<p>
388For aircraft simulations only (xpp is neither equal to 0 nor equal to -1000):
389<blockquote>
390puw,po3 (water vapor content,ozone content between the aircraft and the surface)
391<br>taerp (the aerosol optical thickness at 550nm between the aircraft and the
392surface)
393<p>If these data are not available, enter negative values for all of them.
394puw,po3 will then be interpolated from the us62 standard profile according
395to the values at the ground level. taerp will be computed according to a 2km
396exponential profile for aerosol.
397</blockquote>
398
399<h3>F. Sensor band</h3>
400
401<p>There are two possibilities: either define your own spectral conditions
402(codes -2, -1, 0, or 1) or choose a code indicating the band of one of the
403pre-defined satellites.
404
405<p>Define your own spectral conditions:
406
407<table border="1">
408
409<tr>
410<td><b>Code</b></td>
411<td><b>Meaning</b></td>
412</tr>
413
414<tr>
415<td>-2</td>
416<td>Enter wlinf, wlsup.
417<br>The filter function will be equal to 1 over the whole band (as iwave=0)
418but step by step output will be printed.</td>
419</tr>
420
421<tr>
422<td>-1</td>
423<td>Enter wl (monochr. cond, gaseous absorption is included).</td>
424</tr>
425
426<tr>
427<td>0</td>
428<td>Enter wlinf, wlsup.
429<br>The filter function will be equal to 1over the whole band.</td>
430</tr>
431
432<tr>
433<td>1</td>
434<td>Enter wlinf, wlsup and user's filter function s(lambda) by step of 0.0025
435micrometer.</td>
436</tr>
437</table>
438
439<p>
440Pre-defined satellite bands:
441
442<table border="1">
443
444<tr><td><b>Code</b></td><td><b>Meaning</b></td></tr>
445
446<tr><td>2</td><td><b>meteosat</b> vis band (0.350-1.110)</td></tr>
447
448<tr><td>3</td><td><b>goes east</b> band vis (0.490-0.900)</td></tr>
449<tr><td>4</td><td>goes west band vis (0.490-0.900)</td></tr>
450
451<tr><td>5</td><td><b>avhrr (noaa6)</b> band 1 (0.550-0.750)</td></tr>
452<tr><td>6</td><td>avhrr (noaa6) band 2 (0.690-1.120)</td></tr>
453
454<tr><td>7</td><td><b>avhrr (noaa7)</b> band 1 (0.500-0.800)</td></tr>
455<tr><td>8</td><td>avhrr (noaa7) band 2 (0.640-1.170)</td></tr>
456
457<tr><td>9</td><td><b>avhrr (noaa8)</b> band 1 (0.540-1.010)</td></tr>
458<tr><td>10</td><td>avhrr (noaa8) band 2 (0.680-1.120)</td></tr>
459
460<tr><td>11</td><td><b>avhrr (noaa9)</b> band 1 (0.530-0.810)</td></tr>
461<tr><td>12</td><td>avhrr (noaa9) band 1 (0.680-1.170)</td></tr>
462
463<tr><td>13</td><td><b>avhrr (noaa10)</b> band 1 (0.530-0.780)</td></tr>
464<tr><td>14</td><td>avhrr (noaa10) band 2 (0.600-1.190)</td></tr>
465
466<tr><td>15</td><td><b>avhrr (noaa11)</b> band 1 (0.540-0.820)</td></tr>
467<tr><td>16</td><td>avhrr (noaa11) band 2 (0.600-1.120)</td></tr>
468
469<tr><td>17</td><td><b>hrv1 (spot1)</b> band 1 (0.470-0.650)</td></tr>
470<tr><td>18</td><td>hrv1 (spot1) band 2 (0.600-0.720)</td></tr>
471<tr><td>19</td><td>hrv1 (spot1) band 3 (0.730-0.930)</td></tr>
472<tr><td>20</td><td>hrv1 (spot1) band pan (0.470-0.790)</td></tr>
473
474<tr><td>21</td><td><b>hrv2 (spot1)</b> band 1 (0.470-0.650)</td></tr>
475<tr><td>22</td><td>hrv2 (spot1) band 2 (0.590-0.730)</td></tr>
476<tr><td>23</td><td>hrv2 (spot1) band 3 (0.740-0.940)</td></tr>
477<tr><td>24</td><td>hrv2 (spot1) band pan (0.470-0.790)</td></tr>
478
479<tr><td>25</td><td><b>tm (landsat5)</b> band 1 (0.430-0.560)</td></tr>
480<tr><td>26</td><td>tm (landsat5) band 2 (0.500-0.650)</td></tr>
481<tr><td>27</td><td>tm (landsat5) band 3 (0.580-0.740)</td></tr>
482<tr><td>28</td><td>tm (landsat5) band 4 (0.730-0.950)</td></tr>
483<tr><td>29</td><td>tm (landsat5) band 5 (1.5025-1.890)</td></tr>
484<tr><td>30</td><td>tm (landsat5) band 7 (1.950-2.410)</td></tr>
485
486<tr><td>31</td><td><b>mss (landsat5)</b> band 1 (0.475-0.640)</td></tr>
487<tr><td>32</td><td>mss (landsat5) band 2 (0.580-0.750)</td></tr>
488<tr><td>33</td><td>mss (landsat5) band 3 (0.655-0.855)</td></tr>
489<tr><td>34</td><td>mss (landsat5) band 4 (0.785-1.100)</td></tr>
490
491<tr><td>35</td><td><b>MAS (ER2)</b> band 1 (0.5025-0.5875)</td></tr>
492<tr><td>36</td><td>MAS (ER2) band 2 (0.6075-0.7000)</td></tr>
493<tr><td>37</td><td>MAS (ER2) band 3 (0.8300-0.9125)</td></tr>
494<tr><td>38</td><td>MAS (ER2) band 4 (0.9000-0.9975)</td></tr>
495<tr><td>39</td><td>MAS (ER2) band 5 (1.8200-1.9575)</td></tr>
496<tr><td>40</td><td>MAS (ER2) band 6 (2.0950-2.1925)</td></tr>
497<tr><td>41</td><td>MAS (ER2) band 7 (3.5800-3.8700)</td></tr>
498
499<tr><td>42</td><td><b>MODIS</b> band 1 (0.6100-0.6850)</td></tr>
500<tr><td>43</td><td>MODIS band 2 (0.8200-0.9025)</td></tr>
501<tr><td>44</td><td>MODIS band 3 (0.4500-0.4825)</td></tr>
502<tr><td>45</td><td>MODIS band 4 (0.5400-0.5700)</td></tr>
503<tr><td>46</td><td>MODIS band 5 (1.2150-1.2700)</td></tr>
504<tr><td>47</td><td>MODIS band 6 (1.6000-1.6650)</td></tr>
505<tr><td>48</td><td>MODIS band 7 (2.0575-2.1825)</td></tr>
506
507<tr><td>49</td><td><b>avhrr (noaa12)</b> band 1 (0.500-1.000)</td></tr>
508<tr><td>50</td><td>avhrr (noaa12) band 2 (0.650-1.120)</td></tr>
509
510<tr><td>51</td><td><b>avhrr (noaa14)</b> band 1 (0.500-1.110)</td></tr>
511<tr><td>52</td><td>avhrr (noaa14) band 2 (0.680-1.100)</td></tr>
512
513<tr><td>53</td><td><b>POLDER</b> band 1 (0.4125-0.4775)</td></tr>
514<tr><td>54</td><td>POLDER band 2 (non polar) (0.4100-0.5225)</td></tr>
515<tr><td>55</td><td>POLDER band 3 (non polar) (0.5325-0.5950)</td></tr>
516<tr><td>56</td><td>POLDER band 4 P1 (0.6300-0.7025)</td></tr>
517<tr><td>57</td><td>POLDER band 5 (non polar) (0.7450-0.7800)</td></tr>
518<tr><td>58</td><td>POLDER band 6 (non polar) (0.7000-0.8300)</td></tr>
519<tr><td>59</td><td>POLDER band 7 P1 (0.8100-0.9200)</td></tr>
520<tr><td>60</td><td>POLDER band 8 (non polar) (0.8650-0.9400)</td></tr>
521
522<tr><td>61</td><td><b>etm+ (landsat7)</b> band 1 (0.435-0.520)</td></tr>
523<tr><td>62</td><td>etm+ (landsat7) band 2 (0.506-0.621)</td></tr>
524<tr><td>63</td><td>etm+ (landsat7) band 3 (0.622-0.702)</td></tr>
525<tr><td>64</td><td>etm+ (landsat7) band 4 (0.751-0.911)</td></tr>
526<tr><td>65</td><td>etm+ (landsat7) band 5 (1.512-1.792)</td></tr>
527<tr><td>66</td><td>etm+ (landsat7) band 7 (2.020-2.380)</td></tr>
528<tr><td>67</td><td>etm+ (landsat7) band 8 (0.504-0.909)</td></tr>
529
530<tr><td>68</td><td><b>liss (IRC 1C)</b> band 2 (0.502-0.620)</td></tr>
531<tr><td>69</td><td>liss (IRC 1C) band 3 (0.612-0.700)</td></tr>
532<tr><td>70</td><td>liss (IRC 1C) band 4 (0.752-0.880)</td></tr>
533<tr><td>71</td><td>liss (IRC 1C) band 5 (1.452-1.760)</td></tr>
534
535<tr><td>72</td><td><b>aster </b> band 1 (0.480-0.645)</td></tr>
536<tr><td>73</td><td>aster band 2 (0.588-0.733)</td></tr>
537<tr><td>74</td><td>aster band 3N (0.723-0.913)</td></tr>
538<tr><td>75</td><td>aster band 4 (1.530-1.750)</td></tr>
539<tr><td>76</td><td>aster band 5 (2.103-2.285)</td></tr>
540<tr><td>77</td><td>aster band 6 (2.105-2.298)</td></tr>
541<tr><td>78</td><td>aster band 7 (2.200-2.393)</td></tr>
542<tr><td>79</td><td>aster band 8 (2.248-2.475)</td></tr>
543<tr><td>80</td><td>aster band 9 (2.295-2.538)</td></tr>
544
545<tr><td>81</td><td><b>avnir</b> band 1 (0.390-0.550)</td></tr>
546<tr><td>82</td><td>avnir band 2 (0.485-0.695)</td></tr>
547<tr><td>83</td><td>avnir band 3 (0.545-0.745)</td></tr>
548<tr><td>84</td><td>avnir band 4 (0.700-0.925)</td></tr>
549
550<tr><td>85</td><td><b>ikonos</b> Green band (0.350-1.035)</td></tr>
551<tr><td>86</td><td>ikonos Red band (0.350-1.035)</td></tr>
552<tr><td>87</td><td>ikonos NIR band (0.350-1.035)</td></tr>
553
554<tr><td>88</td><td><b>RapidEye</b> Blue band (0.438-0.513)</td></tr>
555<tr><td>89</td><td>RapidEye Green band (0.463-0.594)</td></tr>
556<tr><td>90</td><td>RapidEye Red band (0.624-0.690)</td></tr>
557<tr><td>91</td><td>RapidEye RedEdge band (0.500-0.737)</td></tr>
558<tr><td>92</td><td>RapidEye NIR band (0.520-0.862)</td></tr>
559
560<tr><td>93</td><td><b>VGT1 (SPOT4)</b> band 0 (0.400-0.500)</td></tr>
561<tr><td>94</td><td>VGT1 (SPOT4) band 2 (0.580-0.782)</td></tr>
562<tr><td>95</td><td>VGT1 (SPOT4) band 3 (0.700-1.030)</td></tr>
563<tr><td>96</td><td>VGT1 (SPOT4) MIR band (1.450-1.800)</td></tr>
564
565<tr><td>97</td><td><b>VGT2 (SPOT5)</b> band 0 (0.400-0.550)</td></tr>
566<tr><td>98</td><td>VGT2 (SPOT5) band 2 (0.580-0.780)</td></tr>
567<tr><td>99</td><td>VGT2 (SPOT5) band 3 (0.700-1.000)</td></tr>
568<tr><td>100</td><td>VGT2 (SPOT5) MIR band (1.450-1.800)</td></tr>
569</table>
570
571<h2>EXAMPLES</h2>
572
573<h3>Atmospheric correction of a LANDSAT-7 channel</h3>
574
575The example is based on the North Carolina sample dataset (GMT -5 hours).
576First we set the computational region to the satellite map, e.g. channel 4:
577<div class="code"><pre>
578g.region rast=lsat7_2002_40 -p
579</pre></div>
580
581It is important to verify the available metadata for the sun position which
582has to be defined for the atmospheric correction. An option is to check the
583satellite overpass time with sun position as reported in
584<a href="ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r035_7x20020524.ETM-EarthSat-Orthorectified/p016r035_7x20020524.met">metadata</a>. For the North Carolina sample dataset, they have also been
585stored for each channel and can be retrieved like this:
586
587<div class="code"><pre>
588r.info lsat7_2002_40
589</pre></div>
590
591In this case, we have: SUN_AZIMUTH = 120.8810347, SUN_ELEVATION = 64.7730999.
592<p>
593
594If the sun position metadata are unavailable, we can also calculate
595them from the overpass time as follows
596(<em><a href="r.sunmask.html">r.sunmask</a></em>
597uses <a href="http://www.nrel.gov/midc/solpos/solpos.html">SOLPOS</a>):
598<div class="code"><pre>
599r.sunmask -s elev=elevation out=dummy year=2002 month=5 day=24 hour=10 min=42 sec=7 timezone=-5
600# .. reports: sun azimuth: 121.342461, sun angle above horz.(refraction corrected): 65.396652
601</pre></div>
602
603If the overpass time is unknown, use the <a href="http://www-air.larc.nasa.gov/tools/predict.htm">Satellite Overpass Predictor</a>.
604<p>
605Convert DN (digital number = pixel values) to Radiance at top-of-atmosphere (TOA), using the
606formula
607<div class="code"><pre>
608 L&lambda; = ((LMAX&lambda; - LMIN&lambda;)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMIN&lambda;
609</pre></div>
610Where:
611<ul>
612<li> L&lambda; = Spectral Radiance at the sensor's aperture in Watt/(meter squared * ster * &micro;m), the
613 apparent radiance as seen by the satellite sensor;</li>
614<li> QCAL = the quantized calibrated pixel value in DN;</li>
615<li> LMIN&lambda; = the spectral radiance that is scaled to QCALMIN in watts/(meter squared * ster * &micro;m);</li>
616<li> LMAX&lambda; = the spectral radiance that is scaled to QCALMAX in watts/(meter squared * ster * &micro;m);</li>
617<li> QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMIN&lambda;) in DN;</li>
618<li> QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAX&lambda;) in DN=255.</li>
619</ul>
620
621LMIN&lambda; and LMAX&lambda; are the radiances related to the minimal and maximal DN value, and are reported
622in the metadata file for each image, or in the table 1. High gain or low gain is also reported
623in the metadata file of each Landsat image. The minimal DN value (QCALMIN) is 1 for Landsat ETM+
624images (see
625<a href="http://landsathandbook.gsfc.nasa.gov/handbook/handbook_htmls/chapter11/chapter11.html">Landsat handbook</a>),
626and the maximal DN value (QCALMAX) is 255. QCAL is the DN value for every
627separate pixel in the Landsat image.
628<p>
629We extract the coefficients and apply them in order to obtain the radiance map:
630<div class="code"><pre>
631CHAN=4
632r.info lsat7_2002_${CHAN}0 -h | tr '\n' ' ' | sed 's+ ++g' | tr ':' '\n' | grep "LMIN_BAND${CHAN}\|LMAX_BAND${CHAN}"
633LMAX_BAND4=241.100,p016r035_7x20020524.met
634LMIN_BAND4=-5.100,p016r035_7x20020524.met
635QCALMAX_BAND4=255.0,p016r035_7x20020524.met
636QCALMIN_BAND4=1.0,p016r035_7x20020524.met
637</pre></div>
638
639Conversion to radiance (this calculation is done for band 4, for the other bands, the numbers in italics
640need to be replaced with their related values):
641
642<div class="code"><pre>
643r.mapcalc "lsat7_2002_40_rad=((241.1 - (-5.1)) / (255.0 - 1.0)) * (lsat7_2002_40 - 1.0) + (-5.1)"
644</pre></div>
645
646
647<div class="code"><pre>
648# find mean elevation (target above sea level, used as initialization value in control file)
649r.univar elevation
650</pre></div>
651
652Create a control file 'icnd.txt' for channel 4 (NIR), based on metadata. For the overpass time,
653we need to define decimal hours:<br>
65410:42:07 NC local time = 10.70 decimal hours (decimal minutes: 42 * 100 / 60) which is 15.70 GMT:
655
656<div class="code"><pre>
657#--------- start of control file -----
6588 - geometrical conditions=Landsat ETM+
6595 24 15.70 -78.691 35.749 - month day hh.ddd longitude latitude ("hh.ddd" is in GMT decimal hours)
6602 - atmospheric mode=midlatitude summer
6611 - aerosols model=continental
66250 - visibility [km] (aerosol model concentration)
663-0.110 - mean target elevation above sea level [km]
664-1000 - sensor on board a satellite
66564 - 4th band of ETM+ Landsat 7
666#--------- end of control file -------
667</pre></div>
668
669Finally, run the atmospheric correction (-r for reflectance input map; -a for date &gt;July 2000;
670-o to use cache acceleration):
671<div class="code"><pre>
672i.atcorr -r -a -o lsat7_2002_40_rad ialt=elevation icnd=icnd_lsat4.txt oimg=lsat7_2002_40_atcorr
673</pre></div>
674
675Note that the altitude value from 'icnd_lsat4.txt' file is read at the beginning
676to compute the initial transform. It is necessary to give a value which could
677be the mean value of the elevation model. For the atmospheric correction then
678the raster elevation values are used from the map.
679<p>
680Note that the process is computationally intensive.<br>
681Note also, that <em>i.atcorr</em> reports solar elevation angle above horizon rather than solar zenith angle.
682
683<h2><font color="red">REMAINING DOCUMENTATION ISSUES</font></h2>
6841. The influence and importance of the visibility value or map should be
685explained, also how to obtain an estimate for either visibility or aerosol
686optical depth at 550nm.
687
688<h2>SEE ALSO</h2>
689
690GRASS Wiki page about
691 <a href="http://grass.osgeo.org/wiki/Atmospheric_correction">Atmospheric correction</a>
692<p>
693<em>
694<a href="r.info.html">r.info</a>,
695<a href="r.mapcalc.html">r.mapcalc</a>,
696<a href="r.univar.html">r.univar</a>
697</em>
698
699<h2>REFERENCES</h2>
700
701<ul>
702<li> Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997,
703Second simulation of the satellite signal in the solar spectrum, 6S: An
704overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686.
705<!-- too new:
706<li> <a href="http://6s.ltdri.org/6S_code2_thinner_stuff/6S_ltdri_org_manual.htm">6S manual
707 (new vector version; i.atcorr is based on the older scalar version)</a>
708 at the <a href="http://6s.ltdri.org">6S homepage</a> of the Land Surface Reflectance
709 Science Computing Facility
710-->
711<li> 6S Manual: <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P1.pdf">PDF1</a>,
712 <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P2.pdf">PDF2</a>,
713 and <a href="http://www.rsgis.ait.ac.th/~honda/textbooks/advrs/6smanv2.0_P3.pdf">PDF3</a>
714<li>RapidEye sensors have been provided by <a href="http://www.rapideye.de/">RapidEye AG, Germany</a>
715</ul>
716
717
718<h2>AUTHORS</h2>
719
720<p><em>Original version of the program for GRASS 5:</em>
721<br>Christo Zietsman, 13422863(at)sun.ac.za
722
723<p><em>Code clean-up and port to GRASS 6.3, 15.12.2006:</em>
724<br>Yann Chemin, ychemin(at)gmail.com
725
726<p><em>Documentation clean-up + IRS LISS sensor addition 5/2009:</em>
727<br>Markus Neteler, FEM, Italy
728
729<p><em>ASTER sensor addition 7/2009:</em>
730<br>Michael Perdue, Canada
731
732<p><em>AVNIR, IKONOS sensors addition 7/2010:</em>
733<br>Daniel Victoria, Anne Ghisla
734
735<p><em>RapidEye sensors addition 11/2010:</em>
736<br>Peter L&ouml;we, Anne Ghisla
737
738<p><em>VGT1 and VGT2 sensors addition from <a href="http://6s.ltdri.org/">6SV-1.1 sources</a>, addition 07/2011:</em>
739<br>Alfredo Alessandrini, Anne Ghisla
740
741<p>
742<i>Last changed: $Date: 2011-09-27 16:00:47 +0000 (Tue, 27 Sep 2011) $</i>
743
Note: See TracBrowser for help on using the repository browser.