GEOS /| GCC-8 Ubuntu Linux Profiling & Instrumentation Notes
darkblue_b / March 2019 / maplabs -@- light42 . com

INTRODUCTION

With new code and construction ahead, libGEOS 3.8.0dev makes a complex testing problem. This document
will detail a few approaches to measuring, monitoring and debugging ELF format binaries generated with gcc
toolchains on linux.

TOOLCHAIN
gcc-8 ## installs 8.1x at the time of writing
gdb-8.2 ## from source gdb-8.2.tar.gz

valgrind-3.14.0 ## from source valgrind-3.14.0.tar.bz2

#!/bin/bash

##-— Add gcc8x to Ubuntu 1604 xenial (.. from a popular gist)
sudo apt—-get update -y &&
sudo apt-get install build-essential software-properties—-common -y &&
sudo add-apt-repository ppa:ubuntu-toolchain-r/test -y &&
sudo apt-get update -y &&
sudo apt-get install gcc-8 g++-8 -y &&
sudo update—alternatives \
-—install /usr/bin/gcc gcc /usr/bin/gcc-8 60 \
—--slave /usr/bin/g++ g++ /usr/bin/g++-8 &&
sudo update—-alternatives —--config gcc

select gcc-8

Build for Testing Workflows

A source code base in git defines the commit IDs, tags and branches of a changing project.
The following are parts of an application building pipeline, emphasizing testing.

Build Target Binary Executables : defined via Cmake and/or autotools; recent builds show
astyle test_bug234 test_geos_unit test_simplewkttester test_sweep_line_speed test_xmltester

Library targets include :
libgeos_c.s0.1.11.0 libgeos.so0.3.8.0dev libgeos.a

Source Code built : git (tag,branch,remote) triple defines the source input

CXXFlags Settings : in order to record a set of build instructions, including CXxFLAGS and linking, a
convention is established to keep a do_build_unigname_vers.sh scriptin the same directory
as a subject test app source file.

It is up to the testing on a case-by-case basis to build 1ibgeos freshly, or not.

Libraries linked : libraries that are hard requirements for GEOS to run, are largely supplied at the OS system
package level. Sources of OS installable packaging (.deb) on a testbed Ubuntu Linux include:
GNU/Linux Debian Canonical/Ubuntu pgdg Postgres UbuntuGIS selected third parties

CORE LIBRARY origin, packaged name and version installed, could be recorded in sets for testing recreation.
Fortunately it is relatively easy to get the fully qualified paths to linked libraries, either statically on disk or at runtime.

App Executables : profiling and debugging are straightforward on a finite application run, a single binary;
the execution being measured has a start, a middle and a clean end. Shared libraries in practice are

often used as long-lived services. So profiling and debugging have new challenges.

It is useful to create small test applications that can be run under very controlled conditions, for profiling and
debugging.

In order to create comparisons of test conditions in an orderly way, it is desirable to record the four attributes shown
above, for any test app. What executable ; What source code base ; Which linked libraries ; What compiler/link flags .

Note for more consistant testing results, test-app builds here

assume the x86_64 environment and explicitly enable Intel AVX support
see AVX https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

CXXFLAGS -march=sandybridge -mtune=sandybridge

TOOL DETAIL

callgrind + kcachegring —---------mmmmmm oo
enable by compiling with any ‘dash-g’ option in CXXFLAGS .. for example -0g -ggdb3

callgrind is a Valgrind tool for “call graph” profiling programs.
Note that callgrind profiling is generally performant enough to run on production installed binaries.
Targets built with full optimizations work well with callgrind. CXXFLAGS -02

Source code does not have to be modified in order to use callgrind+kcachegrind

see valgrind-3.14.0/callgrind/docs

callgrind is for performance profiling; see below for code coverage

Invocation:

valgrind tool=callgrind app args ... ; ## generates callgrind.out.<pid>

Examples of build and run cycle:

build app callgrind-ready
CXXFLAGS="'-v -0g -ggdb3 -std=c++11 -march=sandybridge -mtune=sandybridge -DUSE_UNSTABLE_GEOS_CPP_APTI’

gcc S${CXXFLAGS} \
—I/usr/include/c++/8 —-I/usr/include/x86_64-linux—gnu/c++/8 \
-I/usr/local/include/geos \
RectangleIntersectsPerfTest.cpp \
—o dtest3 \
-1lm -lstdc++ —-lpthread -lgeos

generate a callgrind.out file
valgrind --tool=callgrind dtest3

kcachegrind callgrind.out.20227

KCachegrind is a desktop browser for data produced by profiling tools.
The GUI application opens callgrind.out.<pid> files directly, and is
available in Ubuntu in Development (universe) ; depends on kde-runtime and qt4+

see kcachegrind-0.7.4/doc

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

gcc compiler-generated code coverage hOOKS -------=-m=mmmmmmmmmmm oo

—-—coverage ## convenience option, also adds link options OR
—fprofile-arcs —-ftest-coverage ## minimal flags (see gcc manual)

GCC-native code coverage measurement.
Build an executable with CXXFLAGS -coverage , run once; coverage data file(s) are produced.
"When the compiled program exits it saves this data to a file called auxname . gcda for each source file"

Combine . gcno files generated at compile time, with . gcda files generated on first-run,
and function call behavior is completely recorded.

see gcc/Invoking-Geov.html and gcc/Geov-Data-Files.html

note that "coverage" is a seperate task from “profiling”

QCOVI PYNON o mm o m oo

Gceovr is a python utility for managing the use of the GNU gcov outputs;
generating both summarized and detailed code coverage measurement result reports.

Local install of gcovr
S pip install gcovr —--user

example, given geos-exp/ holding built .gcno .gcda files, gcovr_html/ is an empty dir:
S gcovr -r geos—exp -3 6 ——html-details —--output=gcovr_html/index.html

gi88/ is a CMake-based build setup in alpha stage, that auto-invokes gcovr on an app
no autotools support, and requires one 3rd party CMake module at time of writing

gcov creates a data file, usually sourcefile.gcda which includes
how many times each line of a source file sourcefile.c has executed,
and how much computing time each section of code uses.

Note gcov depends on fragile, local pathnames ! And only on code compiled with GCC.
The gcov tool must be run from the same directory as gcc was run (see gcc manual pages)

examples:

geos_master_cmake/build/bin$
gcov -o ../tests/unit/CMakeFiles/test_geos_unit.dir/geom/TriangleTest.cpp.gcno \
./test_geos_unit geos::geom::Triangle

geos_master_cmake/build/bin$
gcov -m \
-0 ../tests/unit/CMakeFiles/test_geos_unit.dir/geom/TriangleTest.cpp.gcno \
-0 ../tests/unit/CMakeFiles/test_geos_unit.dir/triangulate/*gcno \
-0 ../src/CMakeFiles/geos.dir/geom/Triangle.cpp.gcno \
./test_geos_unit geos::geom::Triangle

OPIOf oo

enable: add CXXFLAGS -pg

A Call Graph Execution Profiler from the early days of *nix; display call graph profile data.

Note If you wish to perform line-by-line profiling you should use the gcov tool instead of gprof

types of outputs available from gprof
- flat profile
- call graph (text)
- annotated source code

gprof produces an execution profile of C or {other} programs. As a test-app is executed, the effect of called routines
is incorporated into the profile of every caller. The profile data is taken from the call graph profile file (gmon . out
default) which is created by programs that are compiled with the —pg option of "gcc" or {other}. The -pg option also
links in versions of the library routines that are compiled for profiling.

example:
gprof —--flat-profile dtest2 gmon.out ## ..1s moderately useful
Symbol FileS ~~----r———m=mm=mmmmee e oo

canonical files supplied by Debian packaging builds, with code libraries (others?)
e.gd. geos—debian-3.5.2/debian/libgeos-3.5.0.symbols

https://lwww.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-symbols
https://lwww.debian.org/doc/manuals/maint-guide/advanced.en.html#librarysymbols

simple script to parse and emit CSV
parse_symbol.py ## see repo TBD

manual hacks to get similar data include:
nm -C libgeos.so > file.txt

gdb info functions > file.txt ## break on main(), opt. load libgeos
parse_nm.py ## see repo TBD

hand parsing gcov tool session output can be made into a table like this:

perc_cov loc fname gcov_fname
0 119 gi88/geos—exp/geos/src/algorithm/RobustDeterminant.cpp RobustDeterminant.cpp.gcov
0 11 gi88/geos—exp/geos/src/index/sweepline/SweepLinelInterval.cpp SweepLinelnterval.cpp.gcov

which can then be compared between builds, in SQL [SQL_A]

CLION 4 perf mommmmmmmmm oo

must run on bare metal, no VMs
CLion is commercial w/ 30-day trial license
https://www.jetbrains.com/help/clion/cpu-profiler.html

perf tool is an OS install
on Debian use linux-tools—-xxxx like linux-tools-4.15.0-43-generic

sudo sh —-c 'echo 1 > /proc/sys/kernel/perf_event_paranoid'

https://www.jetbrains.com/help/clion/cpu-profiler.html

OProOfile —mmm o

packaged in Debian; includes oper£ profiler tool
system-wide profiler for Linux systems

http://oprofile.sourceforge.net/doc/controlling-profiler.html
OProfile provides a low-overhead profiler (operf) capable of both

single-application profiling and system-wide profiling. There is
also a simple event counting tool (ocount).

GNU ISO C++ Profiler =-----s-s-semomem e e e e
enable: #include profiler.h, CXXFLAGS -D_GLIBCXX_PROFILE # and variations

“zillions” of options

can write out a 1ibstdcxx-profile txt file
requires code changes

GCC Instrumentation Directly to FUNCtIONS ==--=======mmmmm e
enable: CXXFLAGS -finstrument-functions

Generate instrumentation calls for entry and exit to functions.
A manual alternative to —-pg ; uses C hooks, described here:

balau82.wordpress.com/2010/10/06/trace-and-profile-function-calls-with-gcc

__cyg_profile_func_enter () ; __cyg_profile_func_exit ()
// example in test_geoms8/trace.c TBD

Profile Guided Optimization (PGO) -------m=mmmmmmmmmmmmm oo
see wikipedia entry

First Step:
CXXFLAGS —fprofile—generate

Enable options usually used for instrumenting application to produce profile useful for later recompilation with

profile feedback based optimization.
You must use -fprofile—-generate both when compiling and when linking your program.

The following options are enabled: ~-fprofile-arcs, -fprofile-values, -fvpt.

Second Step:
run the application built, notice the . gcda files (and others based on options)

To optimize the program based on the collected . gcda profile information,
rebuild the app with new option —-fprofile-use.

Third Step:
CXXFLAGS —fprofile-use

Enable profile feedback-directed optimizations, and the following optimizations which are generally profitable

only with profile feedback available: -fbranch-probabilities, -fvpt, -funroll-loops,
—fpeel-loops, —-ftracer, —-ftree-vectorize,and ftree-loop-distribute-patterns.

see

StackOverflow for How to Use Profile Guided Optimizations in GCC
CProgramming.com 111902-pgo-amazing.htmi

[SQL_A]

##-—

—-— SQL

hack hack —-

hacks

below is SQL after ingesting gcov text outputs, unstable

-— make a table of post-processed gcovr output with python and hand-edit

- test lines in groups of three;

- process into rows of text with python;

CREATE
(

perc_

TABLE public.parsed_gcov

cov double precision,

loc integer,
fname text,

gcov_

)
CREATE

$ find
$ find
user=#

select
select
select
select

select
select

select
select

fname text

TABLE public.srcs_list (

geos—exp -name 'h$' > all_

fname text

cpp_h.txt;

remove the 'no
output is script_out_parsed.tsv

)i

geos—exp —name 'cpp$' >> all_cpp_h.txt
copy srcs_list from '/home/user/srcs_livelO5/investigate_geos/gi88/all_cpp_h.txt';

* from srcs_list ;
count (*) from parsed_gcov

’

code to execute' lines

count (*) from parsed_gcov where perc_cov > 80.0;
count (*) from parsed_gcov where perc_cov < 50.0;

b.fname from parsed_gcov a,
b.fname from parsed_gcov a,

a.fname , b.perc_cov, b.loc
a.fname , b.perc_cov, b.loc

b.loc desc;

select

select
select
select

select
select

select

select
select
select
select

* from parsed_gcov where fname ~

fname from parsed_gcov where fname ~
fname from parsed_gcov where fname ~
fname from parsed_gcov where fname ~

'h$';

srcs_list b where b.fname not in a.fname;

from srcs_list a LEFT JOIN parsed_gcov b on (a.fname
from srcs_list a LEFT JOIN parsed_gcov b on (a.fname

'Geometry.cpp';

'h$' order by fname;
'h$' and fname ~ 'usr' order by fname;

count (fname) from srcs_list where fname ~ 'h$';

a.fname , b.perc_cov, b.loc from srcs_list a LEFT JOIN parsed_gcov b on (a.fname
b.loc desc;
a.fname , b.perc_cov, b.loc from srcs_list a LEFT JOIN parsed_gcov b on (a.fname
b.loc is null order by b.loc desc;

perc_cov, loc, fname from
perc_cov, loc, fname from
perc_cov, loc, fname from
perc_cov, loc, fname from

parsed_gcov
parsed_gcov
parsed_gcov
parsed_gcov

order
order
where
where

by loc desc;
by loc desc;
fname ~ 'Test' order by loc desc;
fname !~ 'Test' order by loc desc;

srcs_list b where b.fname not in (select fname from srcs_list) ;

b.fname) ;
b.fname)

b.fname)

b.fname)

order by

order by

where

	GEOS / GCC-8 Ubuntu Linux Profiling & Instrumentation Notes
	INTRODUCTION
	TOOLCHAIN
	TOOL DETAIL

